IEEE Trans Cybern. 2018 Sep;48(9):2683-2696. doi: 10.1109/TCYB.2017.2748500. Epub 2017 Sep 18.
Local binary pattern (LBP) is a simple, yet efficient coding model for extracting texture features. To improve texture classification, this paper designs a median sampling regulation, defines a group of gradient LBP (gLBP) descriptors, proposes a training-based feature model mapping method, and then develops a texture classification frame using the multiresolution feature fusion of four gLBP descriptors. Cooperated by median sampling, four descriptors encode a pixel respectively by central gradient, radial gradient, magnitude gradient and tangent gradient to generate initial gLBP patterns. The feature mapping models of gLBP descriptors are constructed by the maximal relative-variation rate (mr2) of rotation-invariant patterns, and then prestored as mapping lookup files. By mapping, initial patterns can be transformed into low-dimensional ones. And then it generates multiresolution texture features via the joint and concatenation of gLBP descriptors on different sampling parameters. A trained nearest neighbor classifier with chi-square distance is applied to classify textures by feature histograms. The experimental results of simulation on five public texture databases show that the proposed method is reliable and efficient in texture classification. In comparison with nine other similar approaches, including two state-of-the-art ones, the proposed method runs faster than most of them and also outperforms all of them in terms of classification accuracy and noise robustness. It achieves higher accuracy and has also better robustness to the Salt&Pepper and Gaussian noise added artificially into texture images.
局部二值模式 (LBP) 是一种用于提取纹理特征的简单而有效的编码模型。为了提高纹理分类的性能,本文设计了一种中值采样规则,定义了一组梯度 LBP(gLBP)描述符,提出了一种基于训练的特征模型映射方法,然后利用四种 gLBP 描述符的多分辨率特征融合开发了一种纹理分类框架。在中值采样的配合下,四个描述符分别通过中心梯度、径向梯度、幅度梯度和切向梯度对像素进行编码,以生成初始 gLBP 模式。通过最大相对变化率(mr2)对旋转不变模式进行特征映射模型构建,并将其预先存储为映射查找文件。通过映射,初始模式可以转换为低维模式。然后,通过在不同采样参数上对 gLBP 描述符进行联合和连接,生成多分辨率纹理特征。通过特征直方图应用训练有素的最近邻分类器进行分类。在五个公共纹理数据库上的仿真实验结果表明,该方法在纹理分类中是可靠和高效的。与其他九种类似方法(包括两种最新方法)进行比较,本文提出的方法在速度上优于大多数方法,在分类准确性和噪声鲁棒性方面也优于所有方法。它实现了更高的准确性,并且对人为添加到纹理图像中的椒盐噪声和高斯噪声具有更好的鲁棒性。