Plant Physiology Laboratory, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.; Environmental Engineering Faculty, Universidad de Medellín, 050026 Medellín, Colombia.
Plant Physiology Laboratory, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
J Inorg Biochem. 2018 Apr;181:145-151. doi: 10.1016/j.jinorgbio.2017.09.010. Epub 2017 Sep 10.
The mechanisms of extreme Al-resistance in Urochloa decumbens are not established. Full resistance expression requires a lag time of 72-96h and is preceded by a sensitive phase (24-48h) with Al-induced root growth inhibition. The aim here was to identify key processes of the activation phase of Al-resistance analysing both root exudates and comparative root proteome. Samples were taken after 0, 24 and 96h exposure to 0 or 200μM Al. Al-induced stimulation of citrate and oxalate efflux was limited to the sensitive phase. Only 11 proteins revealed Al-induced abundance differences; six were identified. After 24h, phenylalanine ammonium lyase (PAL), methionine synthase (MS), and deoxymugineic acid synthase (DMAS) decreased, while acid phosphatase (APase) abundance increased. Coincident with growth recovering, PAL and MS, but not DMAS, returned to initial levels. After 96h, γ‑carbonic anhydrase (γ‑CA) and adenylate kinase (AK) along with two unidentified proteins were more abundant. In conclusion, few protein changes characterize the initial response to Al in signalgrass. During the alarm phase, changes are related to P-mobilization, downregulation of Fe-acquisition, reduction of phenolic biosynthesis, and small stimulation of organic acid exudation. After recovering (resistant phase), biosynthesis of phenolics and methionine, but not Fe-mobilization are re-established. Full expression of Al-resistance is characterized by enhanced γ‑CA mediating mitochondrial complex I assembly and increased AK abundance indicating higher root respiration and better provision of ADP and Mg to ATP synthase, respectively. The unidentified proteins and the specific role of γ‑CA in Al resistance of U. decumbens will centre future research.
节节草对铝的极端抗性机制尚不清楚。完全抗性表达需要 72-96 小时的滞后期,并且之前存在铝诱导的根生长抑制的敏感阶段(24-48 小时)。本研究旨在通过分析根系分泌物和比较根系蛋白质组,确定铝抗性激活阶段的关键过程。在暴露于 0 或 200μM Al 0、24 和 96 小时后采集样品。铝诱导的柠檬酸和草酸盐外排仅在敏感阶段受到刺激。只有 11 种蛋白质显示出铝诱导的丰度差异;其中 6 种被鉴定。24 小时后,苯丙氨酸氨裂解酶(PAL)、蛋氨酸合酶(MS)和脱氧木栓酸合酶(DMAS)减少,而酸性磷酸酶(APase)丰度增加。与生长恢复一致,PAL 和 MS 但不是 DMAS 恢复到初始水平。96 小时后,γ-碳酸酐酶(γ-CA)和腺苷酸激酶(AK)以及两种未鉴定的蛋白质含量增加。总之,信号草对铝的初始反应特征是少数蛋白质发生变化。在报警阶段,变化与磷动员、铁获取减少、酚类生物合成减少以及有机酸分泌略有刺激有关。恢复后(抗性阶段),酚类和蛋氨酸的生物合成得以重建,但铁动员没有重建。铝抗性的完全表达特征是增强的 γ-CA 介导的线粒体复合体 I 组装和增加的 AK 丰度,分别表明根系呼吸增强和 ADP 和 Mg 更好地供应给 ATP 合酶。未鉴定的蛋白质和 γ-CA 在节节草铝抗性中的特定作用将成为未来研究的重点。