Center of Analysis and Test, Wenzhou Institute of Industrial Science, Wenzhou 325028, PR China.
School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China.
J Colloid Interface Sci. 2018 Jan 1;509:395-405. doi: 10.1016/j.jcis.2017.09.041. Epub 2017 Sep 9.
The control of dispersity and size of metal particles deposited on substrate surface are always the major challenges for fabricating the efficient and stable metallic nanoparticles-decorated composite. Herein, we proposed a simple liquid-phase atomic layer deposition (L-ALD) method to obtain an atomic-layered MnO nanoparticles loaded palygorskite nanorod (MnO@Pal), involving two-step procedures comprised of the solid-liquid interfacial reaction between organic manganese precursor and surface hydroxyl groups of palygorskite, and then a calcination treatment to activate surface Mn, which is used as a powerful adsorbent for recovery of REE ions from wastewater. The results show that MnO@Pal has a desirable adsorption capacity of 66.80, 45.17 and 48.78mg/g for different REEs of Ce, Eu and Dy respectively, rapid adsorption rate (achieve above 85% capacity within 20min) and low residual concentration (below 1.0ppm). Full kinetic and isotherm analysis as well as thermodynamic study were also undertaken. Exciting, the MnO@Pal exhibited an outstanding regeneration stability that almost no loss on adsorption capacity after 7 consecutive cycles accompanied by near 100% desorption ratio, overcoming the consistent deficiency for such kind composite adsorbent. These results provide a promising surface modification method for fabricating stable metal-modified composite.
控制沉积在基底表面的金属颗粒的分散性和尺寸一直是制备高效稳定的金属纳米颗粒修饰复合材料的主要挑战。在此,我们提出了一种简单的液相原子层沉积(L-ALD)方法来获得负载 MnO 纳米颗粒的坡缕石纳米棒(MnO@Pal),该方法包括两步程序,包括有机锰前驱体与坡缕石表面羟基之间的固-液界面反应,然后进行煅烧处理以激活表面 Mn,Mn 作为一种从废水中回收 REE 离子的强力吸附剂。结果表明,MnO@Pal 对不同的 REEs(Ce、Eu 和 Dy)分别具有理想的吸附容量 66.80、45.17 和 48.78mg/g,吸附速率快(20min 内达到 85%以上的容量),残留浓度低(低于 1.0ppm)。还进行了完整的动力学和等温线分析以及热力学研究。令人兴奋的是,MnO@Pal 表现出出色的再生稳定性,在 7 次连续循环后几乎没有吸附容量损失,同时解吸率接近 100%,克服了此类复合吸附剂的一致缺陷。这些结果为制备稳定的金属修饰复合材料提供了一种有前途的表面改性方法。