Anderson Edward N, Wharton Kristi A
From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912.
From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
J Biol Chem. 2017 Nov 24;292(47):19160-19178. doi: 10.1074/jbc.M117.793513. Epub 2017 Sep 18.
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required for Gbb-Decapentaplegic (Dpp) heterodimer-mediated wing vein patterning but not for Gbb15-Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.
转化生长因子-β(TGF-β)和骨形态发生蛋白(BMP)信号蛋白家族具有众多发育和生理功能。它们最初以前体蛋白二聚体形式合成,然后被前体蛋白转化酶切割,释放出C端结构域作为活性配体二聚体。BMP7的直系同源蛋白玻璃底船(Gbb)中的多个蛋白水解加工位点可产生不同的配体形式。在Gbb的S1或非典型S0位点进行切割会产生Gbb15,即传统的小BMP配体,而在NS位点进行切割则会产生更大的Gbb38配体。我们推测,Gbb的前结构域不仅参与调节特定配体的产生,还参与调节其信号输出。我们发现,阻断NS切割会增加全长前结构域与Gbb15的结合,导致信号活性随之降低。此外,Gbb-无翅(Dpp)异二聚体介导的翅脉模式形成需要NS切割,但在细胞培养中Gbb15-Dpp异二聚体活性则不需要。Gbb NS切割对于通过其以II型受体如意算盘(Wit)依赖的方式调节蛹期蜕皮的生存能力也是必需的。事实上,Gbb38介导的信号传导对Wit的偏好高于另一种II型受体 punt。最后,我们发现,当在三龄幼虫中通过连接糖基化阻断S1/S0位点的加工时,会产生Gbb38。我们的研究结果表明,BMP前结构域的切割可确保成熟配体不会被前结构域抑制。此外,BMP前体蛋白的选择性加工会产生通过不同受体发出信号并表现出特定发育功能的配体。