Suppr超能文献

一种用于基于原始对象的轮廓整合和图形-背景分离的循环神经网络模型。

A recurrent neural model for proto-object based contour integration and figure-ground segregation.

作者信息

Hu Brian, Niebur Ernst

机构信息

Zanvyl Krieger Mind/Brain Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Zanvyl Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

J Comput Neurosci. 2017 Dec;43(3):227-242. doi: 10.1007/s10827-017-0659-3. Epub 2017 Sep 19.

Abstract

Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.

摘要

物体的视觉处理利用了前馈和反馈信息流。然而,反馈信号的本质在很大程度上尚不清楚,接收这些信号的低级视觉区域中的神经元群体的身份也是如此。在这里,我们开发了一个循环神经模型,以在轮廓整合和图形-背景分离的背景下解决这些问题。我们模型的一个关键特征是使用分组神经元,其活动基于局部特征信息的整合来表示暂定物体(“原物体”)。分组神经元从一组有组织的局部特征神经元接收输入,并向这些相同的神经元投射调节性反馈。此外,局部特征水平和物体表征水平的抑制都使视觉场景的解释产生偏差,这与格式塔心理学的原理一致。我们的模型解释了几组神经生理学结果(周等人,《神经科学杂志》,20(17),6594 - 6611,2000年;邱等人,《自然神经科学》,10(11),1492 - 1499,2007年;陈等人,《神经元》,82(3),682 - 694,2014年),并对神经元反馈和注意力选择对不同视觉区域神经反应的影响做出了可测试的预测。我们的模型还提供了一个框架,用于理解基于物体的注意力如何能够选择物体及其相关特征。

相似文献

1
A recurrent neural model for proto-object based contour integration and figure-ground segregation.
J Comput Neurosci. 2017 Dec;43(3):227-242. doi: 10.1007/s10827-017-0659-3. Epub 2017 Sep 19.
2
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Neural Netw. 2010 Mar;23(2):160-76. doi: 10.1016/j.neunet.2009.10.005. Epub 2009 Oct 30.
3
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.
PLoS Comput Biol. 2015 Oct 23;11(10):e1004489. doi: 10.1371/journal.pcbi.1004489. eCollection 2015 Oct.
4
Spike synchrony reveals emergence of proto-objects in visual cortex.
J Neurosci. 2015 Apr 29;35(17):6860-70. doi: 10.1523/JNEUROSCI.3590-14.2015.
5
Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7583-8. doi: 10.1073/pnas.1014655108. Epub 2011 Apr 18.
6
7
A neural model of figure-ground organization.
J Neurophysiol. 2007 Jun;97(6):4310-26. doi: 10.1152/jn.00203.2007. Epub 2007 Apr 18.
8
Columnar processing of border ownership in primate visual cortex.
Elife. 2021 Nov 30;10:e72573. doi: 10.7554/eLife.72573.
9
Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention.
PLoS Comput Biol. 2021 Mar 25;17(3):e1008829. doi: 10.1371/journal.pcbi.1008829. eCollection 2021 Mar.
10
Synchrony and covariation of firing rates in the primary visual cortex during contour grouping.
Nat Neurosci. 2004 Sep;7(9):982-91. doi: 10.1038/nn1304. Epub 2004 Aug 22.

引用本文的文献

1
Figure recognition and visual attention patterns behind the observation of Palaeolithic art.
J Cult Cogn Sci. 2025;9(2):225-241. doi: 10.1007/s41809-025-00170-0. Epub 2025 Jun 8.
2
Grouping signals in primate visual cortex.
Neuron. 2025 Aug 6;113(15):2508-2520.e5. doi: 10.1016/j.neuron.2025.05.003. Epub 2025 Jun 2.
3
Brain-like border ownership signals support prediction of natural videos.
iScience. 2025 Mar 11;28(4):112199. doi: 10.1016/j.isci.2025.112199. eCollection 2025 Apr 18.
4
Event-driven figure-ground organisation model for the humanoid robot iCub.
Nat Commun. 2025 Feb 22;16(1):1874. doi: 10.1038/s41467-025-56904-9.
6
Connectivity concepts in neuronal network modeling.
PLoS Comput Biol. 2022 Sep 8;18(9):e1010086. doi: 10.1371/journal.pcbi.1010086. eCollection 2022 Sep.
7
Columnar processing of border ownership in primate visual cortex.
Elife. 2021 Nov 30;10:e72573. doi: 10.7554/eLife.72573.
8
Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention.
PLoS Comput Biol. 2021 Mar 25;17(3):e1008829. doi: 10.1371/journal.pcbi.1008829. eCollection 2021 Mar.
10

本文引用的文献

1
Consistency of Border-Ownership Cells across Artificial Stimuli, Natural Stimuli, and Stimuli with Ambiguous Contours.
J Neurosci. 2016 Nov 2;36(44):11338-11349. doi: 10.1523/JNEUROSCI.1857-16.2016.
2
Spike synchrony generated by modulatory common input through NMDA-type synapses.
J Neurophysiol. 2016 Sep 1;116(3):1418-33. doi: 10.1152/jn.01142.2015. Epub 2016 Jul 13.
3
Spike synchrony reveals emergence of proto-objects in visual cortex.
J Neurosci. 2015 Apr 29;35(17):6860-70. doi: 10.1523/JNEUROSCI.3590-14.2015.
4
Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.
Front Comput Neurosci. 2014 Aug 11;8:93. doi: 10.3389/fncom.2014.00093. eCollection 2014.
5
Border-ownership coding.
Scholarpedia J. 2013;8(10):30040. doi: 10.4249/scholarpedia.30040.
6
Incremental integration of global contours through interplay between visual cortical areas.
Neuron. 2014 May 7;82(3):682-94. doi: 10.1016/j.neuron.2014.03.023.
7
A model of proto-object based saliency.
Vision Res. 2014 Jan;94:1-15. doi: 10.1016/j.visres.2013.10.005. Epub 2013 Oct 31.
8
Network model of top-down influences on local gain and contextual interactions in visual cortex.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):E4108-17. doi: 10.1073/pnas.1317019110. Epub 2013 Oct 7.
9
Receptive field focus of visual area V4 neurons determines responses to illusory surfaces.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17095-100. doi: 10.1073/pnas.1310806110. Epub 2013 Oct 1.
10
Intermediate-level visual representations and the construction of surface perception.
J Cogn Neurosci. 1995 Spring;7(2):267-91. doi: 10.1162/jocn.1995.7.2.267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验