Irikura Karl K
Chemical Sciences Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-8320, United States.
J Phys Chem A. 2017 Oct 12;121(40):7751-7760. doi: 10.1021/acs.jpca.7b07993. Epub 2017 Sep 29.
The dissociative ionization of molecules under electron impact forms the basis for analytical mass spectrometry of volatile compounds. It is also important in other situations, notably plasmas. Although qualitative theory for mass spectrometry was developed long ago, progress toward predictive theory has been slow. A major obstacle has been ignorance of the amount of energy deposited in the molecular ion, prior to its fragmentation. Here, we consider the Binary-Encounter Bethe (BEB) theory, which was originally developed for predicting total ionization cross sections. The energy deposition function constructed from BEB molecular-orbital cross sections compares well with the two comparable (e, 2e + ion) experimental measurements. When combined with experimental breakdown data from photoelectron-photoion-coincidence measurements, the BEB energy deposition function successfully reproduces library mass spectra for all but one of the six molecules studied here. This indicates that BEB molecular-orbital cross sections are physically meaningful and are useful for modeling the energy deposition during electron ionization of molecules.
电子碰撞下分子的离解电离构成了挥发性化合物分析质谱的基础。它在其他情况下也很重要,特别是在等离子体中。尽管质谱的定性理论早在很久以前就已发展起来,但预测理论的进展一直很缓慢。一个主要障碍是在分子离子碎片化之前,人们对沉积在其中的能量数量缺乏了解。在此,我们考虑二元碰撞贝塞(BEB)理论,该理论最初是为预测总电离截面而发展的。由BEB分子轨道截面构建的能量沉积函数与两项可比的(电子,双电子 + 离子)实验测量结果吻合良好。当与光电子 - 光离子符合测量的实验分解数据相结合时,BEB能量沉积函数成功地再现了此处研究的六个分子中除一个之外的所有分子的库质谱。这表明BEB分子轨道截面具有物理意义,并且对于模拟分子电子电离过程中的能量沉积是有用的。