Mei Shuyan, Karimnezhad Ali, Forest Marie, Bickel David R, Greenwood Celia M T
Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada.
Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
PLoS One. 2017 Sep 20;12(9):e0185174. doi: 10.1371/journal.pone.0185174. eCollection 2017.
The maximum entropy (ME) method is a recently-developed approach for estimating local false discovery rates (LFDR) that incorporates external information allowing assignment of a subset of tests to a category with a different prior probability of following the null hypothesis. Using this ME method, we have reanalyzed the findings from a recent large genome-wide association study of coronary artery disease (CAD), incorporating biologic annotations. Our revised LFDR estimates show many large reductions in LFDR, particularly among the genetic variants belonging to annotation categories that were known to be of particular interest for CAD. However, among SNPs with rare minor allele frequencies, the reductions in LFDR were modest in size.
最大熵(ME)方法是一种最近开发的用于估计局部错误发现率(LFDR)的方法,该方法纳入了外部信息,允许将一部分测试分配到具有不同原假设先验概率的类别中。使用这种ME方法,我们重新分析了最近一项关于冠状动脉疾病(CAD)的大型全基因组关联研究的结果,并纳入了生物学注释。我们修订后的LFDR估计显示,LFDR有许多大幅降低,特别是在属于已知对CAD特别感兴趣的注释类别的基因变异中。然而,在罕见小等位基因频率的单核苷酸多态性(SNP)中,LFDR的降低幅度不大。