Yuan Kai-Jun, Bandrauk André D
Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Phys Chem Chem Phys. 2017 Oct 4;19(38):25846-25852. doi: 10.1039/c7cp05067d.
Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.
探索超快电荷迁移在生物和化学反应中具有重要意义。我们提出了一种通过电子衍射从从头算数值模拟中监测分子中阿秒级电荷迁移的方案,该方案具有空间和时间分辨率。一个紫外脉冲产生电子态的相干叠加,之后一个延迟的阿秒级X射线脉冲用于使分子电离。研究发现,X射线光电子能谱中的衍射图样呈现出不对称结构,这取决于泵浦-探测脉冲之间的时间延迟,编码了分子轨道对称性和化学键的信息。我们通过建立相干叠加态的电子含时超快分子光电离模型来描述这些现象。电子衍射图样的周期性畸变说明了电子相干性的演化,为超快分子反应过程的阿秒成像提供了一种工具。