University of the Basque Country, UPV/EHU, Manuel Lardizabal 1, 20018 San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diza de Haro, 3, 48013 Bilbao, Spain.
University of Isfahan, Iran.
Neural Netw. 2017 Nov;95:91-101. doi: 10.1016/j.neunet.2017.08.002. Epub 2017 Aug 24.
It is well known that dense coding with local bases (via Least Square coding schemes) can lead to large quantization errors or poor performances of machine learning tasks. On the other hand, sparse coding focuses on accurate representation without taking into account data locality due to its tendency to ignore the intrinsic structure hidden among the data. Local Hybrid Coding (LHC) (Xiang et al., 2014) was recently proposed as an alternative to the sparse coding scheme that is used in Sparse Representation Classifier (SRC). The LHC blends sparsity and bases-locality criteria in a unified optimization problem. It can retain the strengths of both sparsity and locality. Thus, the hybrid codes would have some advantages over both dense and sparse codes. This paper introduces a data-driven graph construction method that exploits and extends the LHC scheme. In particular, we propose a new coding scheme coined Adaptive Local Hybrid Coding (ALHC). The main contributions are as follows. First, the proposed coding scheme adaptively selects the local and non-local bases of LHC using data similarities provided by Locality-constrained Linear code. Second, the proposed ALHC exploits local similarities in its solution. Third, we use the proposed coding scheme for graph construction. For the task of graph-based label propagation, we demonstrate high classification performance of the proposed graph method on four benchmark face datasets: Extended Yale, PF01, PIE, and FERET.
众所周知,基于局部基的密集编码(通过最小二乘编码方案)可能导致大的量化误差或机器学习任务的性能不佳。另一方面,稀疏编码侧重于准确表示,而不考虑由于其倾向于忽略数据中隐藏的内在结构而导致的数据局部性。局部混合编码(LHC)(Xiang 等人,2014)最近被提出作为稀疏编码方案的替代方案,该方案用于稀疏表示分类器(SRC)。LHC 将稀疏性和基局部性标准融合在一个统一的优化问题中。它可以保留稀疏性和局部性的优势。因此,混合码将比密集码和稀疏码具有一些优势。本文介绍了一种数据驱动的图构建方法,该方法利用并扩展了 LHC 方案。具体来说,我们提出了一种新的编码方案,称为自适应局部混合编码(ALHC)。主要贡献如下。首先,所提出的编码方案使用局部约束线性码提供的数据相似性自适应地选择 LHC 的局部和非局部基。其次,所提出的 ALHC 在其解决方案中利用局部相似性。第三,我们使用所提出的编码方案进行图构建。对于基于图的标签传播任务,我们在四个基准人脸数据集(扩展耶鲁、PF01、PIE 和 FERET)上展示了所提出的图方法的高分类性能。