Suppr超能文献

高效的动态图构建用于归纳式半监督学习。

Efficient dynamic graph construction for inductive semi-supervised learning.

机构信息

University of the Basque Country, UPV/EHU, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France.

出版信息

Neural Netw. 2017 Oct;94:192-203. doi: 10.1016/j.neunet.2017.07.006. Epub 2017 Jul 24.

Abstract

Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction.

摘要

大多数图构建技术都假设在构建时可以获得整个数据集合的转导设置。针对归纳设置中的图构建问题(数据是按顺序出现的),关注较少。对于归纳设置,从头开始构建图可能非常耗时。本文介绍了一个通用框架,该框架能够使任何图构建方法具有增量性。该框架产生了一种高效且动态的图构建方法,可以将新样本(有标签或无标签)添加到先前构建的图中。作为一个案例研究,我们使用最近提出的两阶段加权正则化最小二乘(TPWRLS)图构建方法。本文有两个主要贡献。首先,我们使用 TPWRLS 编码方案根据现有数据库来表示新样本。然后,使用代表系数更新图亲和矩阵。所提出的方法不仅将新样本附加到图中,而且通过发现受新样本引入影响的节点以及更新其边权重来更新整个图结构。本文的第二个贡献是将所提出的框架应用于基于图的标签传播问题,该问题使用基于视觉的识别任务的多个观测值。在几个图像数据库上的实验表明,在最终分类准确性没有明显损失的情况下,所提出的动态图构建比批量图构建更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验