Duncan John F R, Mertens Michael H, Ono Ken
Department of Mathematics and Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.
Mathematisches Institut der Universität zu Köln, Weyertal 86-90, D-50931, Köln, Germany.
Nat Commun. 2017 Sep 22;8(1):670. doi: 10.1038/s41467-017-00660-y.
Finite simple groups are the building blocks of finite symmetry. The effort to classify them precipitated the discovery of new examples, including the monster, and six pariah groups which do not belong to any of the natural families, and are not involved in the monster. It also precipitated monstrous moonshine, which is an appearance of monster symmetry in number theory that catalysed developments in mathematics and physics. Forty years ago the pioneers of moonshine asked if there is anything similar for pariahs. Here we report on a solution to this problem that reveals the O'Nan pariah group as a source of hidden symmetry in quadratic forms and elliptic curves. Using this we prove congruences for class numbers, and Selmer groups and Tate-Shafarevich groups of elliptic curves. This demonstrates that pariah groups play a role in some of the deepest problems in mathematics, and represents an appearance of pariah groups in nature.Classifying groups is an important challenge in mathematics and has led to the identification of groups which do not belong to the main families. Here Duncan et al. introduce a type of moonshine which is a connection between these groups, number theory and potentially physics.
有限单群是有限对称性的基石。对它们进行分类的努力促成了新例子的发现,包括魔群以及六个不属于任何自然族且与魔群无关的散在群。这也催生了怪异月光猜想,即在数论中魔群对称性的一种表现形式,它推动了数学和物理学的发展。四十年前,月光猜想的先驱者们问,对于散在群是否有类似的情况。在此我们报告该问题的一个解决方案,它揭示了奥南散在群是二次型和椭圆曲线中隐藏对称性的一个来源。利用这一点,我们证明了类数以及椭圆曲线的塞尔默群和泰特 - 沙法列维奇群的同余式。这表明散在群在数学中一些最深奥的问题中发挥着作用,并且代表了散在群在自然中的一种表现形式。对群进行分类是数学中的一项重要挑战,并且已经导致了不属于主要族的群的识别。在此,邓肯等人引入了一种月光猜想类型,它是这些群、数论以及潜在物理学之间的一种联系。