L. Boltzmann Institute for Experimental and Clinical Traumatology in AUVA center, Vienna, Austria.
Sci Rep. 2017 Sep 21;7(1):12092. doi: 10.1038/s41598-017-11531-3.
Inorganic nitrite (NO) can be reduced back to nitric oxide (NO) by several heme proteins called nitrite reductases (NR) which affect both the vascular tonus and hemodynamics. The objective of this study was to clarify the impact of several NRs on the regulation of hemodynamics, for which hemodynamic parameters such as heart rate, blood pressure, arterial stiffness, peripheral resistance and myocardial contractility were characterized by pulse wave analysis. We have demonstrated that NO reduced to NO in RBCs predominantly influences the heart rate, while myoglobin (Mb) and mitochondria-derived NO regulates arterial stiffness, peripheral resistance and myocardial contractility. Using ex vivo on-line NO-detection, we showed that Mb is the strongest NR occurring in heart, which operates sufficiently only at very low oxygen levels. In contrast, mitochondrial NR operates under both hypoxia and normoxia. Additional experiments with cardiomyocytes suggested that only mitochondria-derived generation of NO regulates cGMP levels mediating the contractility of cardiomyocytes. Our data suggest that a network of NRs is involved in NO mediated regulation of hemodynamics. Oxygen tension and hematocrit define the activity of specific NRs.
无机亚硝酸盐 (NO) 可以被几种称为亚硝酸盐还原酶 (NR) 的血红素蛋白还原回一氧化氮 (NO),这些酶影响血管张力和血液动力学。本研究的目的是阐明几种 NR 对血液动力学调节的影响,为此,我们通过脉搏波分析来描述心率、血压、动脉僵硬度、外周阻力和心肌收缩力等血液动力学参数。我们已经证明,在 RBC 中还原为 NO 的 NO 主要影响心率,而肌红蛋白 (Mb) 和线粒体衍生的 NO 调节动脉僵硬度、外周阻力和心肌收缩力。通过体外在线 NO 检测,我们表明 Mb 是心脏中最强的 NR,它仅在非常低的氧水平下才能充分发挥作用。相比之下,线粒体 NR 在缺氧和正常氧条件下都起作用。用心肌细胞进行的额外实验表明,只有线粒体衍生的 NO 生成调节 cGMP 水平,从而调节心肌细胞的收缩性。我们的数据表明,NR 网络参与了 NO 介导的血液动力学调节。氧张力和血细胞比容定义了特定 NR 的活性。