Suppr超能文献

影响哺乳动物细胞拉曼光谱非负矩阵分解质量的经验因素。

Empirical Factors Affecting the Quality of Non-Negative Matrix Factorization of Mammalian Cell Raman Spectra.

机构信息

1 Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada.

2 Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada.

出版信息

Appl Spectrosc. 2017 Dec;71(12):2681-2691. doi: 10.1177/0003702817732117. Epub 2017 Sep 22.

Abstract

Mammalian cells contain various macromolecules that can be investigated non-invasively with Raman spectroscopy. The particular mixture of major macromolecules present in a cell being probed are reflected in the measured Raman spectra. Determining macromolecular identities and estimating their concentrations from these mixture Raman spectra can distinguish cell types and otherwise enable biological research. However, the application of canonical multivariate methods, such as principal component analysis (PCA), to perform spectral unmixing yields mathematical solutions that can be difficult to interpret. Non-negative matrix factorization (NNMF) improves the interpretability of unmixed macromolecular components, but can be difficult to apply because ambiguities produced by overlapping Raman bands permit multiple solutions. Furthermore, theoretically sound methods can be difficult to implement in practice. Here we examined the effects of a number of empirical approaches on the quality of NNMF results. These approaches were evaluated on simulated mammalian cell Raman hyperspectra and the results were used to develop an enhanced procedure for implementing NNMF. We demonstrated the utility of this procedure using a Raman hyperspectral data set measured from human islet cells to recover the spectra of insulin and glucagon. This was compared to the relatively inferior PCA of these data.

摘要

哺乳动物细胞中含有各种可以用拉曼光谱进行非侵入性研究的大分子。正在探测的细胞中存在的主要大分子的特定混合物反映在测量的拉曼光谱中。从这些混合物拉曼光谱中确定大分子的身份并估计其浓度,可以区分细胞类型,并能够进行其他生物学研究。然而,应用典型的多元方法,如主成分分析(PCA),进行光谱解混,得到的数学解可能难以解释。非负矩阵分解(NNMF)提高了未混合大分子成分的可解释性,但由于重叠拉曼带产生的歧义允许存在多个解,因此应用起来可能很困难。此外,理论上合理的方法在实践中可能难以实施。在这里,我们研究了许多经验方法对 NNMF 结果质量的影响。这些方法在模拟哺乳动物细胞拉曼高光谱上进行了评估,并使用这些结果开发了一种用于实施 NNMF 的增强程序。我们使用从人胰岛细胞测量的拉曼高光谱数据集来恢复胰岛素和胰高血糖素的光谱,证明了该程序的实用性,这与这些数据的相对较差的 PCA 进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验