Suppr超能文献

CRISPR 相关聚合酶介导的寡核苷酸信号的发现解决了两个难题,但仍留下一个谜。

Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.

机构信息

National Center for Biotechnology Information, National Library of Medicine , Bethesda, Maryland 20894, United States.

出版信息

ACS Chem Biol. 2018 Feb 16;13(2):309-312. doi: 10.1021/acschembio.7b00713. Epub 2017 Sep 27.

Abstract

The signature component of type III CRISPR-Cas systems is the Cas10 protein that consists of two Palm domains homologous to those of DNA and RNA polymerases and nucleotide cyclases and an HD nuclease domain. However, until very recently, the activity of the Palm domains and their role in CRISPR function have not been experimentally established. Most of the type III CRISPR-Cas systems and some type I systems also encompass proteins containing the CARF (CRISPR-associated Rossmann fold) domain that has been predicted to regulate CRISPR functions via nucleotide binding, but its function in CRISPR-Cas remained obscure. Two independent recent studies show that the Palm domain of Cas10 catalyzes synthesis of oligoadenylates, which bind the CARF domain of the Csm6 protein and activate its RNase domain that cleaves foreign transcripts enabling interference by type III CRISPR-Cas. In one coup, these findings resolved two long-standing puzzles of CRISPR biology and reveal a new regulatory pathway that governs the CRISPR response. However, the full extent of this pathway, and especially the driving forces behind the evolution of this complex mechanism of CRISPR-Cas activation, remains to be uncovered.

摘要

III 型 CRISPR-Cas 系统的特征性组成部分是 Cas10 蛋白,它由两个 Palm 结构域组成,与 DNA 和 RNA 聚合酶以及核苷酸环化酶同源,还有一个 HD 核酸酶结构域。然而,直到最近,Palm 结构域的活性及其在 CRISPR 功能中的作用还没有通过实验来确定。大多数 III 型 CRISPR-Cas 系统和一些 I 型系统还包含含有 CARF(CRISPR 相关罗斯曼折叠)结构域的蛋白质,该结构域被预测通过核苷酸结合来调节 CRISPR 功能,但它在 CRISPR-Cas 中的功能仍然不清楚。最近的两项独立研究表明,Cas10 的 Palm 结构域催化寡聚腺苷酸的合成,寡聚腺苷酸结合 Csm6 蛋白的 CARF 结构域并激活其 RNase 结构域,该结构域切割外来转录本,从而使 III 型 CRISPR-Cas 能够进行干扰。一举解决了 CRISPR 生物学中的两个长期存在的难题,并揭示了一种新的调控途径,该途径调控着 CRISPR 的反应。然而,这个途径的全部范围,尤其是这个复杂的 CRISPR-Cas 激活机制的进化背后的驱动力,仍有待揭示。

相似文献

1
Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
ACS Chem Biol. 2018 Feb 16;13(2):309-312. doi: 10.1021/acschembio.7b00713. Epub 2017 Sep 27.
2
Regulation of cyclic oligoadenylate synthesis by the Cas10-Csm complex.
RNA. 2019 Aug;25(8):948-962. doi: 10.1261/rna.070417.119. Epub 2019 May 10.
3
CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Cleavage with ApA>p Formation Terminating RNase Activity.
Mol Cell. 2019 Sep 5;75(5):944-956.e6. doi: 10.1016/j.molcel.2019.06.014. Epub 2019 Jul 17.
4
5
Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA.
J Biol Chem. 2020 Oct 30;295(44):14963-14972. doi: 10.1074/jbc.RA120.014099. Epub 2020 Aug 21.
6
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29.
8
Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.

引用本文的文献

1
Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system.
Nucleic Acids Res. 2024 Aug 12;52(14):8419-8430. doi: 10.1093/nar/gkae569.
2
Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.
EMBO J. 2024 Jan;43(2):304-315. doi: 10.1038/s44318-023-00017-w. Epub 2023 Dec 19.
3
Harnessing CRISPR-Cas adaptation for RNA recording and beyond.
BMB Rep. 2024 Jan;57(1):40-49. doi: 10.5483/BMBRep.2023-0050.
4
5
The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain.
iScience. 2022 Oct 20;25(11):105425. doi: 10.1016/j.isci.2022.105425. eCollection 2022 Nov 18.
8
Evolutionary plasticity and functional versatility of CRISPR systems.
PLoS Biol. 2022 Jan 5;20(1):e3001481. doi: 10.1371/journal.pbio.3001481. eCollection 2022 Jan.
9
Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms and .
Front Microbiol. 2021 Nov 22;12:779012. doi: 10.3389/fmicb.2021.779012. eCollection 2021.

本文引用的文献

1
Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.
2
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29.
3
A decade of discovery: CRISPR functions and applications.
Nat Microbiol. 2017 Jun 5;2:17092. doi: 10.1038/nmicrobiol.2017.92.
4
Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
Curr Opin Microbiol. 2017 Aug;38:36-43. doi: 10.1016/j.mib.2017.04.004. Epub 2017 May 1.
5
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.
6
Type III CRISPR-Cas Immunity: Major Differences Brushed Aside.
Trends Microbiol. 2017 Jan;25(1):49-61. doi: 10.1016/j.tim.2016.09.012. Epub 2016 Oct 20.
7
Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins.
Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707). doi: 10.1098/rstb.2015.0498.
8
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
9
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验