College of Chemistry, Fuzhou University, Fuzhou 350108, China.
Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
Nucleic Acids Res. 2023 Mar 21;51(5):2485-2495. doi: 10.1093/nar/gkad101.
The cyclic oligoadenylates (cOAs) act as second messengers of the type III CRISPR immunity system through activating the auxiliary nucleases for indiscriminate RNA degradation. The cOA-degrading nucleases (ring nucleases) provide an 'off-switch' regulation of the signaling, thereby preventing cell dormancy or cell death. Here, we describe the crystal structures of the founding member of CRISPR-associated ring nuclease 1 (Crn1) Sso2081 from Saccharolobus solfataricus, alone, bound to phosphate ions or cA4 in both pre-cleavage and cleavage intermediate states. These structures together with biochemical characterizations establish the molecular basis of cA4 recognition and catalysis by Sso2081. The conformational changes in the C-terminal helical insert upon the binding of phosphate ions or cA4 reveal a gate-locking mechanism for ligand binding. The critical residues and motifs identified in this study provide a new insight to distinguish between cOA-degrading and -nondegrading CARF domain-containing proteins.
环状寡腺苷酸 (cOAs) 通过激活辅助核酸酶对无差别 RNA 进行降解,从而作为 III 型 CRISPR 免疫系统的第二信使发挥作用。cOA 降解核酸酶(环核酶)为信号转导提供了“关闭开关”的调节,从而防止细胞休眠或死亡。在这里,我们描述了来自嗜热硫化叶菌的 CRISPR 相关环核酶 1 (Crn1) Sso2081 的结构,单独的、与磷酸盐离子或 cA4 结合的 Sso2081 在预切割和切割中间体状态下的结构。这些结构以及生化特性确定了 Sso2081 识别和催化 cA4 的分子基础。C 末端螺旋插入物在结合磷酸盐离子或 cA4 时发生的构象变化揭示了配体结合的门控锁定机制。本研究中鉴定的关键残基和模体为区分 cOA 降解和非降解 CARF 结构域蛋白提供了新的见解。