a Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences , Kadir Has University , Fatih, Istanbul 34083 , Turkey.
b Center for Biotechnology Research , Bayero University , P.M.B. 3011, B.U.K. Road, Kano , Nigeria.
J Biomol Struct Dyn. 2018 Sep;36(12):3231-3245. doi: 10.1080/07391102.2017.1384402. Epub 2017 Oct 23.
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.
组蛋白去乙酰化酶(HDACs)作为抗癌药物设计和开发的靶点受到了越来越多的关注。HDAC 抑制剂已被证明在逆转 HDAC 依赖性癌症病例的恶性表型方面非常有效。然而,临床使用和试验中的许多 HDAC 抑制剂缺乏选择性,导致对健康细胞的毒性。人们相信,继续鉴定同工型选择性抑制剂将消除这些不良的不良反应——这仍然是 HDAC 抑制剂设计的主要挑战。在这里,为了鉴定同工型选择性抑制剂,通过使用 rDOCK 和 Autodock Vina 的基于结构的虚拟筛选穷举方法,对来自 Otava 数据库的包含 2703000 种化合物的大型化合物库对 I 类 HDACs 进行了筛选。共有 41 种化合物被发现具有高同工型选择性,并使用 Autodock4 进一步重新对接至各自的靶标。36 种化合物表现出显著的同工型选择性,并通过 ADMET Predictor™和 admetSAR 对药物相似性和吸收、分布、代谢、消除和毒性预测测试进行了筛选。此外,为了研究配体结合模式的稳定性,使用 nanoscale MD 软件对游离 HDAC 同工型及其与各自最佳排名配体的复合物进行了 10ns 分子动力学(MD)模拟。抑制剂在模拟过程中的时间内仍然与各自的靶标结合,整体势能、均方根偏差、均方根波动曲线表明,所检测的化合物可能是潜在的同工型选择性 HDAC 抑制剂,或者可以作为进一步优化的有前途的支架,以设计用于癌症治疗的选择性抑制剂。
J Biomol Struct Dyn. 2019-1-10
Pharmaceuticals (Basel). 2024-5-10
AIDS Res Hum Retroviruses. 2022-8
Int J Mol Sci. 2020-11-22
J Diabetes. 2021-3
Front Chem. 2020-9-11