Suppr超能文献

在寻找组蛋白去乙酰化酶抑制剂的过程中:多层计算方法应用的当前趋势。

In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods.

机构信息

Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.

Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.

出版信息

Amino Acids. 2023 Dec;55(12):1709-1726. doi: 10.1007/s00726-023-03297-y. Epub 2023 Jun 27.

Abstract

Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.

摘要

过去三十年来,组蛋白去乙酰化酶 (HDAC) 抑制剂因其在治疗各种疾病方面的潜力而受到关注,这些疾病包括各种形式的癌症、神经退行性疾病、自身免疫性疾病、炎症性疾病和其他代谢性疾病。迄今为止,已有 5 种 HDAC 抑制剂药物上市用于治疗血液系统恶性肿瘤,并且有几种候选药物 HDAC 抑制剂处于不同的临床试验阶段。然而,由于这些药物缺乏靶标选择性而导致的毒性副作用,目前正在积极开展研究以设计和开发具有类选择性或同工酶选择性的抑制剂。计算方法辅助了具有所需效力和/或选择性的 HDAC 抑制剂的发现。这些方法包括基于配体的方法,例如支架跳跃、药效团建模、三维定量构效关系 (3D-QSAR);和基于结构的虚拟筛选 (分子对接)。目前的趋势涉及这些方法的组合应用,并结合分子动力学模拟与泊松-玻尔兹曼/分子力学广义 Born 表面积 (MM-PBSA/MM-GBSA) 以提高配体结合亲和力的预测。本综述旨在了解应用这些多层策略的当前趋势及其对 HDAC 抑制剂的设计/鉴定的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验