Suppr超能文献

基于人血血浆荧光的层次分类器用于非侵入性结直肠癌筛查。

A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening.

机构信息

Institute of Informatics - Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.

Department of Industrial Engineering - Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha, 99-5° andar, Porto Alegre, RS, Brazil.

出版信息

Artif Intell Med. 2017 Oct;82:1-10. doi: 10.1016/j.artmed.2017.09.004. Epub 2017 Sep 20.

Abstract

Colorectal cancer (CRC) a leading cause of death by cancer, and screening programs for its early identification are at the heart of the increasing survival rates. To motivate population participation, non-invasive, accurate, scalable and cost-effective diagnosis methods are required. Blood fluorescence spectroscopy provides rich information that can be used for cancer identification. The main challenges in analyzing blood fluorescence data for CRC classification are related to its high dimensionality and inherent variability, especially when analyzing a small number of samples. In this paper, we present a hierarchical classification method based on plasma fluorescence to identify not only CRC, but also adenomas and other non-malignant colorectal findings that may require further medical investigation. A feature selection algorithm is proposed to deal with the high dimensionality and select discriminant fluorescence wavelengths. These are used to train a binary support vector machine (SVM) in the first level to identify the CRC samples. The remaining samples are then presented to a one-class SVM trained on healthy subjects to detect deviant samples, and thus non-malignant findings. This hierarchical design, together with the one class-SVM, aims to reduce the effects of small samples and high variability. Using a dataset analyzed in previous studies comprised of 12,341 wavelengths, we achieved much superior results. Sensitivity and specificity are 0.87 and 0.95 for CRC detection, and 0.60 and 0.79 for non-malignant findings, respectively. Compared to related work, the proposed method presented a better accuracy, required fewer features, and provides a unified approach that expands CRC detection to non-malignant findings.

摘要

结直肠癌(CRC)是癌症死亡的主要原因,其早期识别的筛查计划是提高生存率的核心。为了激励人群参与,需要非侵入性、准确、可扩展和具有成本效益的诊断方法。血液荧光光谱提供了丰富的信息,可用于癌症识别。分析血液荧光数据以进行 CRC 分类的主要挑战与它的高维度和固有可变性有关,特别是在分析少量样本时。在本文中,我们提出了一种基于血浆荧光的分层分类方法,不仅可以识别 CRC,还可以识别腺瘤和其他可能需要进一步医学调查的非恶性结直肠病变。提出了一种特征选择算法来处理高维度并选择有区别的荧光波长。这些波长用于在第一级训练二进制支持向量机(SVM)以识别 CRC 样本。然后将其余样本呈现给在健康受试者上训练的单类 SVM,以检测异常样本,从而检测非恶性发现。这种分层设计与单类 SVM 一起旨在减少小样本和高变异性的影响。使用以前研究中分析的包含 12341 个波长的数据集,我们取得了优异的结果。CRC 检测的灵敏度和特异性分别为 0.87 和 0.95,非恶性发现的灵敏度和特异性分别为 0.60 和 0.79。与相关工作相比,所提出的方法具有更高的准确性、更少的特征,并且提供了一种统一的方法,将 CRC 检测扩展到非恶性发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验