Suppr超能文献

一种预测行 Norwood 手术患儿结局的预后工具。

A prognostic tool to predict outcomes in children undergoing the Norwood operation.

机构信息

Division of Pediatric Cardiology, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Ark.

Department of Mathematical Sciences, University of Arkansas, Fayetteville, Ark.

出版信息

J Thorac Cardiovasc Surg. 2017 Dec;154(6):2030-2037.e2. doi: 10.1016/j.jtcvs.2017.08.034. Epub 2017 Aug 30.

Abstract

OBJECTIVES

To create and validate a prediction model to assess outcomes associated with the Norwood operation.

METHODS

The public-use dataset from a multicenter, prospective, randomized single-ventricle reconstruction trial was used to create this novel prediction tool. A Bayesian lasso logistic regression model was used for variable selection. We used a hierarchical framework by representing discrete probability models with continuous latent variables that depended on the risk factors for a particular patient. Bayesian conditional probit regression and Markov chain Monte Carlo simulations were then used to estimate the effects of the predictors on the means of these latent variables to create a score function for each of the study outcomes. We also devised a method to calculate the risk of outcomes associated with the Norwood operation before the actual heart operation. The 2 study outcomes evaluated were in-hospital mortality and composite poor outcome.

RESULTS

The training dataset used 520 patients to generate the prediction model. The model included patient demographics, baseline characteristics, cardiac diagnosis, operation details, site volume, and surgeon experience. An online calculator for the tool can be accessed at https://soipredictiontool.shinyapps.io/NorwoodScoreApp/. Model validation was performed on 520 observations using an internal 10-fold cross-validation approach. The prediction model had an area under the curve of 0.77 for mortality and 0.72 for composite poor outcome on the validation dataset.

CONCLUSIONS

Our new prognostic tool is a promising first step in creating real-time risk stratification in children undergoing a Norwood operation; this tool will be beneficial for the purposes of benchmarking, family counseling, and research.

摘要

目的

建立并验证一个预测模型,以评估与 Norwood 手术相关的结局。

方法

本研究使用了一项多中心、前瞻性、随机单心室重建试验的公开数据集来创建这个新的预测工具。采用贝叶斯套索逻辑回归模型进行变量选择。我们使用了一个分层框架,通过使用连续的潜在变量来表示离散概率模型,这些潜在变量取决于特定患者的风险因素。然后,采用贝叶斯条件概率回归和马尔可夫链蒙特卡罗模拟来估计预测因子对这些潜在变量均值的影响,从而为每个研究结局创建一个评分函数。我们还设计了一种方法来计算在实际心脏手术之前与 Norwood 手术相关的结局风险。评估的 2 个研究结局是住院死亡率和复合不良结局。

结果

训练数据集使用了 520 例患者来生成预测模型。该模型包括患者人口统计学特征、基线特征、心脏诊断、手术细节、手术地点数量和外科医生经验。该工具的在线计算器可在 https://soipredictiontool.shinyapps.io/NorwoodScoreApp/ 上访问。使用内部 10 折交叉验证方法对 520 个观测值进行了模型验证。该预测模型在验证数据集中对死亡率的曲线下面积为 0.77,对复合不良结局的曲线下面积为 0.72。

结论

我们的新预后工具是在接受 Norwood 手术的儿童中进行实时风险分层的一个有前途的第一步;该工具将有助于基准测试、家庭咨询和研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验