Suppr超能文献

迈向阿尔茨海默病的精准医学:解读基因数据以建立信息性生物标志物。

Towards precision medicine in Alzheimer's disease: deciphering genetic data to establish informative biomarkers.

作者信息

Chiba-Falek Ornit, Lutz Michael W

机构信息

Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA.

Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Expert Rev Precis Med Drug Dev. 2017;2(1):47-55. doi: 10.1080/23808993.2017.1286227. Epub 2017 Feb 1.

Abstract

INTRODUCTION

Developing biomarker tools for identification of individuals at high-risk for late-onset Alzheimer's disease (LOAD) is important for prognosis and early treatment. This review focuses on genetic factors and their potential role for precision medicine in LOAD.

AREAS COVERED

e4 is the strongest genetic risk factor for non-Mendelian LOAD, and the -linkage disequilibrium (LD) region has produced the most significant association signal in multi-center genome-wide-association-studies (GWAS). Consideration of extended haplotypes in the -LD region and specifically, non-coding variants in putative enhancer elements, such as the -polyT, in-addition to the coding variants that comprise the -genotypes, may be useful for predicting subjects at high-risk of developing LOAD and estimating age-of-onset of early disease-stage symptoms. A genetic-biomarker based on -polyT haplotypes, and age is currently applied in a clinical trial for prevention/delay of LOAD onset. Additionally, we discuss LOAD-GWAS discoveries and the development of new genetic risk scores based on LOAD-GWAS findings other than the -LD region.

EXPERT COMMENTARY

Deciphering the precise causal genetic-variants within LOAD-GWAS regions will advance the development of genetic-biomarkers to complement and refine the -LD region based prediction model. Collectively, the genetic-biomarkers will be translational for early diagnosis and enrichment of clinical trials with subjects at high-risk.

摘要

引言

开发用于识别晚发性阿尔茨海默病(LOAD)高危个体的生物标志物工具对于预后和早期治疗至关重要。本综述聚焦于遗传因素及其在LOAD精准医学中的潜在作用。

涵盖领域

ε4是散发性LOAD最强的遗传风险因素,且连锁不平衡(LD)区域在多中心全基因组关联研究(GWAS)中产生了最显著的关联信号。除了构成ε基因型的编码变异外,考虑ε-LD区域的扩展单倍型,特别是推定增强子元件中的非编码变异,如ε-多聚T,可能有助于预测LOAD高危个体并估计疾病早期症状的发病年龄。一种基于ε-多聚T单倍型和年龄的遗传生物标志物目前正在一项预防/延缓LOAD发病的临床试验中应用。此外,我们还讨论了LOAD-GWAS的发现以及基于LOAD-GWAS结果(除ε-LD区域外)开发的新遗传风险评分。

专家评论

解读LOAD-GWAS区域内精确的因果遗传变异将推动遗传生物标志物的开发,以补充和完善基于ε-LD区域的预测模型。总体而言,这些遗传生物标志物将有助于早期诊断,并在高危个体的临床试验中实现富集。

相似文献

1
Towards precision medicine in Alzheimer's disease: deciphering genetic data to establish informative biomarkers.
Expert Rev Precis Med Drug Dev. 2017;2(1):47-55. doi: 10.1080/23808993.2017.1286227. Epub 2017 Feb 1.
3
4
New Genetic Approaches to AD: Lessons from APOE-TOMM40 Phylogenetics.
Curr Neurol Neurosci Rep. 2016 May;16(5):48. doi: 10.1007/s11910-016-0643-8.
6
A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease.
Pharmacogenomics J. 2010 Oct;10(5):375-84. doi: 10.1038/tpj.2009.69. Epub 2009 Dec 22.
7
The effects of the TOMM40 poly-T alleles on Alzheimer's disease phenotypes.
Alzheimers Dement. 2018 May;14(5):692-698. doi: 10.1016/j.jalz.2018.01.015. Epub 2018 Mar 7.
8
TOMM40 and APOE Gene Expression and Cognitive Decline in Japanese Alzheimer's Disease Subjects.
J Alzheimers Dis. 2017;60(3):1107-1117. doi: 10.3233/JAD-170361.

引用本文的文献

1
Sex differences in treatment effects of lecanemab and donanemab: A Bayesian reanalysis of CLARITY-AD and TRAILBLAZER-ALZ2.
Alzheimers Dement (N Y). 2025 Sep 5;11(3):e70155. doi: 10.1002/trc2.70155. eCollection 2025 Jul-Sep.
2
and variants differentiate the impacts of the 4 allele on Alzheimer's disease risk across sexes, ages, and ancestries.
Alzheimers Dement (Amst). 2024 Jun 22;16(2):e12600. doi: 10.1002/dad2.12600. eCollection 2024 Apr-Jun.
5
Alzheimer's disease pathology explains association between dementia with Lewy bodies and APOE-ε4/TOMM40 long poly-T repeat allele variants.
Alzheimers Dement (N Y). 2019 Nov 20;5:814-824. doi: 10.1016/j.trci.2019.08.005. eCollection 2019.
6
Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease?
Dialogues Clin Neurosci. 2018 Dec;20(4):293-300. doi: 10.31887/DCNS.2018.20.4/dgurwitz.
7
Computer-Aided Multi-Target Management of Emergent Alzheimer's Disease.
Bioinformation. 2018 May 5;14(4):167-180. doi: 10.6026/97320630014167. eCollection 2018.
8
APOE ε4-TOMM40 '523 haplotypes and the risk of Alzheimer's disease in older Caucasian and African Americans.
PLoS One. 2017 Jul 3;12(7):e0180356. doi: 10.1371/journal.pone.0180356. eCollection 2017.

本文引用的文献

1
'523 variant and cognitive decline in older persons with ε3/3 genotype.
Neurology. 2017 Feb 14;88(7):661-668. doi: 10.1212/WNL.0000000000003614. Epub 2017 Jan 20.
2
Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.
Methods Mol Biol. 2017;1488:337-362. doi: 10.1007/978-1-4939-6427-7_16.
3
The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species.
Nucleic Acids Res. 2017 Jan 4;45(D1):D712-D722. doi: 10.1093/nar/gkw1128. Epub 2016 Nov 29.
4
Sex biology contributions to vulnerability to Alzheimer's disease: A think tank convened by the Women's Alzheimer's Research Initiative.
Alzheimers Dement. 2016 Nov;12(11):1186-1196. doi: 10.1016/j.jalz.2016.08.004. Epub 2016 Sep 27.
5
Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease.
J Alzheimers Dis. 2016 Jun 18;53(3):921-32. doi: 10.3233/JAD-150749.
7
Genetic variants in Alzheimer disease - molecular and brain network approaches.
Nat Rev Neurol. 2016 Jul;12(7):413-27. doi: 10.1038/nrneurol.2016.84. Epub 2016 Jun 10.
8
Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge.
Alzheimers Dement. 2016 Sep;12(9):1014-1021. doi: 10.1016/j.jalz.2016.04.008. Epub 2016 May 26.
9
The Role of Upregulated APOE in Alzheimer's Disease Etiology.
J Alzheimers Dis Parkinsonism. 2016 Mar;6(1). doi: 10.4172/2161-0460.1000209. Epub 2016 Feb 9.
10
A Genetics-based Biomarker Risk Algorithm for Predicting Risk of Alzheimer's Disease.
Alzheimers Dement (N Y). 2016 Jan 1;2(1):30-44. doi: 10.1016/j.trci.2015.12.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验