Suppr超能文献

核壳结构 Au@金属氧化物纳米颗粒电催化剂用于增强氧气析出反应。

Core-Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution.

机构信息

Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States.

Nano-Science Center, Department of Chemistry, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark.

出版信息

Nano Lett. 2017 Oct 11;17(10):6040-6046. doi: 10.1021/acs.nanolett.7b02357. Epub 2017 Sep 25.

Abstract

Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal-air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. Herein, we translate the beneficial impact of Au supports to high surface area, device-ready core-shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@MO where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancement when employing the Au-core in the 3d transition metal-oxide nanoparticles. The highest activity particles, Au@CoFeO, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core-shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.

摘要

增强电化学氧气析出的催化作用对于许多可再生能源技术的功效至关重要,包括水电解槽和金属-空气电池。最近,金载体被证明可以增强许多 3d 过渡金属氧化物薄膜在碱性介质中氧气析出反应(OER)的活性。在此,我们将金载体的有益影响转化为高表面积、可用于器件的核壳纳米粒子,其由金核和金属氧化物壳(Au@MO,其中 M = Ni、Co、Fe 和 CoFe)组成。通过系统评估,我们确立了性能趋势,并说明了在 3d 过渡金属氧化物纳米粒子中使用金核时普遍的活性增强。活性最高的粒子 Au@CoFeO 在 10 mA cm 的电流密度下经过 2 小时稳定性测试后的过电势为 328 ± 3 mV,这表明在核壳纳米粒子形态中策略性地结合金载体和混合金属氧化物效应是实现可用于器件的高性能 OER 催化剂的有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验