IEEE Trans Biomed Eng. 2018 Jun;65(6):1391-1398. doi: 10.1109/TBME.2017.2754980. Epub 2017 Sep 20.
Hexahedral automatic model generation is a recurrent problem in computer vision and computational biomechanics. It may even become a challenging problem when one wants to develop a patient-specific finite element (FE) model of the left ventricle (LV), particularly when only low resolution images are available. In the present study, a fast and efficient algorithm is presented and tested to address such a situation.
A template FE hexahedral model was created for an LV geometry using a general electric ultrasound (US) system. A system of centerline was considered for this LV mesh. Then, the nodes located over the endocardial and epicardial surfaces are, respectively, projected from this centerline onto the actual endocardial and epicardial surfaces reconstructed from a patient's US data. Finally, the position of the internal nodes is derived by finding the deformations with minimal elastic energy. This approach was applied to eight patients suffering from congestive heart disease. An FE analysis was performed to derive the stress induced in the LV tissue by diastolic blood pressure on each of them.
Our model morphing algorithm was applied successfully and the obtained meshes showed only marginal mismatches when compared to the corresponding US geometries. The diastolic FE analyses were successfully performed in seven patients to derive the distribution of principal stresses.
The original model morphing algorithm is fast and robust with low computational cost.
This low-cost model morphing algorithm may be highly beneficial for future patient-specific reduced-order modeling of the LV with potential application to other crucial organs.
在计算机视觉和计算生物力学中,六面体自动模型生成是一个反复出现的问题。当需要开发特定于患者的左心室(LV)有限元(FE)模型时,尤其是当只有低分辨率图像可用时,它甚至可能成为一个具有挑战性的问题。在本研究中,提出并测试了一种快速有效的算法来解决这种情况。
使用通用电气超声(US)系统为 LV 几何形状创建了一个模板 FE 六面体模型。为此 LV 网格考虑了中心线系统。然后,将位于心内膜和心外膜表面上的节点分别从该中心线投影到从患者 US 数据重建的心内膜和心外膜实际表面上。最后,通过找到具有最小弹性能量的变形来推导出内部节点的位置。该方法应用于 8 名患有充血性心力衰竭的患者。对他们每个人进行 FE 分析,以得出舒张期血压对 LV 组织产生的应力。
我们的模型变形算法成功应用,与相应的 US 几何形状相比,获得的网格仅存在微小的不匹配。在 7 名患者中成功进行了舒张期 FE 分析,以得出主应力的分布。
原始的模型变形算法快速、稳健,计算成本低。
这种低成本的模型变形算法对于未来具有潜在应用于其他关键器官的特定于患者的 LV 降阶建模可能非常有益。