Yadav Raghvendra Singh, Kuřitka Ivo, Vilcakova Jarmila, Havlica Jaromir, Kalina Lukas, Urbánek Pavel, Machovsky Michal, Skoda David, Masař Milan, Holek Martin
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
Ultrason Sonochem. 2018 Jan;40(Pt A):773-783. doi: 10.1016/j.ultsonch.2017.08.024. Epub 2017 Aug 24.
In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFeGdO; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFeGdO nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd substitution in CoFeO nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd doped cobalt ferrite (CoFeGdO; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation distribution in Gd doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications.
在这项工作中,报道了一种利用超声辐照制备钆掺杂钴铁氧体(CoFeGdO;x = 0.00、0.05、0.10、0.15、0.20)纳米颗粒的简便绿色方法。评估了钆替代对钴铁氧体纳米颗粒的结构、磁性、介电和电学性质的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、振动样品磁强计(VSM)对超声化学合成的尖晶石铁氧体纳米颗粒进行了表征。X射线衍射(XRD)研究证实了CoFeGdO纳米颗粒单相尖晶石铁氧体的形成。XRD结果还表明,超声辐照似乎有利于在不进行任何后退火处理的情况下获得高度结晶的单晶相钆掺杂钴铁氧体纳米颗粒。傅里叶变换红外光谱和拉曼光谱证实了尖晶石铁氧体晶体结构的形成。X射线光电子能谱揭示了CoFeO纳米颗粒中钆替代对尖晶石铁氧体晶体系统中四面体和八面体位点阳离子分布的影响。电学性质表明,钆掺杂钴铁氧体(CoFeGdO;x = 0.20)表现出增强的介电常数(100Hz时为277)和交流电导率(100Hz时为20.2×10S/cm)。模量光谱证明了钴铁氧体纳米颗粒中钆替代对晶界弛豫时间、电容和电阻的影响。磁性测量表明,矫顽力随着钆替代从234.32奥斯特(x = 0.00)降至12.60奥斯特(x = 0.05),并从12.60奥斯特(x = 0.05)进一步增至68.62奥斯特(x = 0.20)。此外,饱和磁化强度随着钆替代从40.19emu/g(x = 0.00)降至21.58emu/g(x = 0.20)。这项工作表明,通过超声化学方法合成的钆掺杂钴铁氧体纳米颗粒中的晶粒尺寸和阳离子分布,有效地控制了其结构、磁性和电学性质,并具有非常广阔的应用前景。
Ultrason Sonochem. 2018-1
Mater Sci Eng C Mater Biol Appl. 2017-9-1
Nanotechnology. 2021-11-5
Nanomaterials (Basel). 2022-8-18
Materials (Basel). 2018-7-19
Polymers (Basel). 2024-4-6