Suppr超能文献

TRIM66 在非小细胞肺癌中的表达:一种新的预后预测因子。

TRIM66 expression in non-small cell lung cancer: A new predictor of prognosis.

机构信息

Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.

Department of Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.

出版信息

Cancer Biomark. 2017 Sep 7;20(3):309-315. doi: 10.3233/CBM-170207.

Abstract

OBJECTIVE

The tripartite motif-containing protein (TRIM) family is involved in important biological processes such as the cell cycle, cell apoptosis, and innate immunity of virus. This study aimed to investigate TRIM66 expression and its predictive role in non-small cell lung cancer (NSCLC) patients.

METHODS

We detected the expression levels of TRIM66 protein and TRIM66 mRNA in NSCLC tissues, and evaluated the prognostic role of TRIM66 in NSCLC.

RESULTS

TRIMM66 was highly expressed in NSCLC tissues compared with normal paracancerous tissues (P= 0.001). The high TRIM66 expression closely associated with lymph node metastasis and TNM stage in NSCLC patients (P< 0.05). Kaplan-Meier survival model indicated that survival time of NSCLC patients in the high TRIM66 expression group were markedly lower than those in the low expression group (P< 0.05). Cox regression analysis showed that high expression of TRIM66 is associated with poor prognosis in NSCLC patients.

CONCLUSION

TRIM66 can be serve as an important molecular marker for predicting the prognosis in NSCLC patients.

摘要

目的

三结构域蛋白(TRIM)家族参与细胞周期、细胞凋亡和病毒固有免疫等重要的生物学过程。本研究旨在探讨 TRIM66 在非小细胞肺癌(NSCLC)患者中的表达及其预测作用。

方法

检测 NSCLC 组织中 TRIM66 蛋白和 TRIM66mRNA 的表达水平,并评估 TRIM66 在 NSCLC 中的预后作用。

结果

TRIMM66 在 NSCLC 组织中的表达明显高于癌旁正常组织(P=0.001)。高 TRIM66 表达与 NSCLC 患者的淋巴结转移和 TNM 分期密切相关(P<0.05)。Kaplan-Meier 生存模型表明,高 TRIM66 表达组 NSCLC 患者的生存时间明显低于低表达组(P<0.05)。Cox 回归分析显示,TRIM66 高表达与 NSCLC 患者预后不良相关。

结论

TRIM66 可作为预测 NSCLC 患者预后的重要分子标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验