Suppr超能文献

通过无人机和高光谱图像自动探测预先存在的白蚁丘。

Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

机构信息

Robotics and autonomous systems, Queensland University of Technology (QUT), Brisbane City QLD 4000, Australia.

出版信息

Sensors (Basel). 2017 Sep 24;17(10):2196. doi: 10.3390/s17102196.

Abstract

The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

摘要

随着无人机 (UAV) 技术的不断发展,以及人工智能和机器学习 (ML) 方法的结合,为干旱地区的遥感提供了可能。本文旨在提出一种利用无人机、高光谱图像、机器学习和数字图像处理来检测白蚁丘的新方法。提出了一种新的管道流程,以自动检测白蚁丘,并相应地减少检测时间。在分类阶段,研究了几种 ML 分类算法的结果,选择支持向量机作为最佳方法,因为它们在已有白蚁丘的图像分类中发挥了作用。对所提出的算法应用了各种测试条件,得到了 68%的整体准确性。具有满意的土丘检测结果的图像证明了该方法是“依赖分辨率的”。无论这些土丘在航空图像中的旋转和位置如何,都可以检测到它们。然而,由于在目标检测阶段包含了形状分析方法,图像变形减少了检测到的土丘数量,并且图像分辨率仍然是获得准确结果的决定因素。高光谱图像在对大量材料进行分类方面表现出了更好的能力,而不仅仅是在 RGB 图像上实施传统的分割方法。

相似文献

2
UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
Sensors (Basel). 2018 Jun 25;18(7):2026. doi: 10.3390/s18072026.
6
8
The role of mound functions and local environment in the diversity of termite mound structures.
J Theor Biol. 2021 Oct 21;527:110823. doi: 10.1016/j.jtbi.2021.110823. Epub 2021 Jul 1.
9
Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?
J Therm Biol. 2018 May;74:23-28. doi: 10.1016/j.jtherbio.2018.03.004. Epub 2018 Mar 13.
10
Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images.
Comput Intell Neurosci. 2020 Sep 1;2020:8886932. doi: 10.1155/2020/8886932. eCollection 2020.

引用本文的文献

1
Termite Detection Techniques in Embankment Maintenance: Methods and Trends.
Sensors (Basel). 2025 Jul 15;25(14):4404. doi: 10.3390/s25144404.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验