Suppr超能文献

利用无人机、高光谱传感器和人工智能进行受病原体影响森林的航空测绘。

Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.

机构信息

Insitute for Future Environments; Robotics and Autonomous Systems, Queensland University of Technology (QUT), 2 George St, Brisbane City, QLD 4000, Australia.

Horticulture & Forestry Science, Department of Agriculture & Fisheries, Ecosciences Precinct, 41 Boggo Rd Dutton Park, QLD 4102, Australia.

出版信息

Sensors (Basel). 2018 Mar 22;18(4):944. doi: 10.3390/s18040944.

Abstract

The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust () on paperbark tea trees () in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools.

摘要

外来真菌物种对天然林和人工林的环境和经济影响历来是灾难性的。有记录的监测和控制措施具有挑战性,因为它们在偏远地区既昂贵、耗时又危险。在现场进行的长期测试和观察受到限制,无法验证外来病原体的快速繁殖和宿主的恶化速度。最近的遥感方法提供了快速、广泛且经济实惠的调查以及其他可以补充地面测试的指标。本文提出了一个框架,该框架将基于现场的见解和遥感能力结合起来,以检测和划分天然林和人工林中真菌病原体引起的恶化。该方法通过澳大利亚新南威尔士州(新州)的杨梅锈病()对纸皮茶()的实验案例进行说明。该方法整合了无人机(UAV)、高光谱图像传感器以及使用机器学习的数据处理算法。使用 Headwall Nano-Hyperspec ® 相机获取图像,在 Headwall SpectralView ® 中进行正射校正,并使用 Python 编程语言中的极端梯度提升(XGBoost)、地理空间数据抽象库(GDAL)和 Scikit-learn 第三方库进行处理。总共提取并标记了 11385 个样本,分为五类:两类为恶化状态,三类为背景对象。研究结果表明,健康树木的个体检测率为 95%,恶化树木的个体检测率为 97%,全局多类别检测率为 97%。该方法具有通用性,可应用于使用不同图像传感器获取的附加数据集,以及使用免费软件工具处理大型数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0583/5948945/c732e1f83f4c/sensors-18-00944-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验