Koike Narihiko, Ii Satoshi, Yoshinaga Tsukasa, Nozaki Kazunori, Wada Shigeo
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
J Biomech. 2017 Nov 7;64:69-76. doi: 10.1016/j.jbiomech.2017.09.008. Epub 2017 Sep 14.
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control.
本文提出了一种用于估计言语过程中舌肌主动收缩应力的新型逆估计方法。所提出的方法基于变分数据同化,使用机械舌模型和用于言语产生的三维舌面形状。机械舌模型考虑了非线性超弹性、有限变形、来自计算机断层扫描(CT)图像的实际几何形状以及肌肉纤维的各向异性主动收缩,其方向理想情况下使用解剖图来确定。通过使用有限元方法求解稳态力平衡方程来获得舌的变形。建立一个逆问题,以找到使言语产生的机械分析和CT结果之间舌面的欧几里得距离最小化的肌肉收缩应力组合,其中符号距离函数表示舌面。我们的方法通过一个理想数值示例进行了验证,并扩展到了两个日语元音/ʉ/和/ɯ/的实际情况。结果在理想情况下完全捕获了目标形状,并对主动收缩应力进行了出色的估计,并且在实际元音情况下呈现出与先前观察和模拟相似的趋势。本方法能够揭示不同舌形状的相似发音中肌肉收缩应力之间的相对关系,并且仅使用从医学图像获得的变形舌形状就能研究言语过程中舌肌的协调性。这将增强我们对言语运动控制的理解。