Suppr超能文献

基于模型的逆估计法,利用语音产生过程中的三维表面形状来估计舌肌的主动收缩应力

Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

作者信息

Koike Narihiko, Ii Satoshi, Yoshinaga Tsukasa, Nozaki Kazunori, Wada Shigeo

机构信息

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

出版信息

J Biomech. 2017 Nov 7;64:69-76. doi: 10.1016/j.jbiomech.2017.09.008. Epub 2017 Sep 14.

Abstract

This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control.

摘要

本文提出了一种用于估计言语过程中舌肌主动收缩应力的新型逆估计方法。所提出的方法基于变分数据同化,使用机械舌模型和用于言语产生的三维舌面形状。机械舌模型考虑了非线性超弹性、有限变形、来自计算机断层扫描(CT)图像的实际几何形状以及肌肉纤维的各向异性主动收缩,其方向理想情况下使用解剖图来确定。通过使用有限元方法求解稳态力平衡方程来获得舌的变形。建立一个逆问题,以找到使言语产生的机械分析和CT结果之间舌面的欧几里得距离最小化的肌肉收缩应力组合,其中符号距离函数表示舌面。我们的方法通过一个理想数值示例进行了验证,并扩展到了两个日语元音/ʉ/和/ɯ/的实际情况。结果在理想情况下完全捕获了目标形状,并对主动收缩应力进行了出色的估计,并且在实际元音情况下呈现出与先前观察和模拟相似的趋势。本方法能够揭示不同舌形状的相似发音中肌肉收缩应力之间的相对关系,并且仅使用从医学图像获得的变形舌形状就能研究言语过程中舌肌的协调性。这将增强我们对言语运动控制的理解。

相似文献

1
Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.
J Biomech. 2017 Nov 7;64:69-76. doi: 10.1016/j.jbiomech.2017.09.008. Epub 2017 Sep 14.
2
A control model of human tongue movements in speech.
Biol Cybern. 1997 Jul;77(1):11-22. doi: 10.1007/s004220050362.
3
Physics-based deformable tongue visualization.
IEEE Trans Vis Comput Graph. 2013 May;19(5):811-23. doi: 10.1109/TVCG.2012.174.
4
Physiological modeling of speech production: methods for modeling soft-tissue articulators.
J Acoust Soc Am. 1995 May;97(5 Pt 1):3085-98. doi: 10.1121/1.411871.
5
Construction and control of a physiological articulatory model.
J Acoust Soc Am. 2004 Feb;115(2):853-70. doi: 10.1121/1.1639325.
6
Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
Proc Inst Mech Eng H. 2018 Mar;232(3):271-281. doi: 10.1177/0954411917751000. Epub 2018 Jan 19.
7
Simulation of vowel-vowel utterances using a 3D biomechanical-acoustic model.
Int J Numer Method Biomed Eng. 2021 Jan;37(1):e3407. doi: 10.1002/cnm.3407. Epub 2020 Oct 29.
8
A three-dimensional model of tongue movement based on ultrasound and x-ray microbeam data.
J Acoust Soc Am. 1990 May;87(5):2207-17. doi: 10.1121/1.399188.
9
Tongue movements in feeding and speech.
Crit Rev Oral Biol Med. 2003;14(6):413-29. doi: 10.1177/154411130301400604.
10
Single syllable tongue motion analysis using tagged cine MRI.
Comput Methods Biomech Biomed Engin. 2014;17(8):853-64. doi: 10.1080/10255842.2012.723697. Epub 2012 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验