Aho Johnathon M, Nenadic Ivan Z, Aristizabal Sara, Wigle Dennis A, Tschumperlin Daniel J, Urban Matthew W
Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905.
Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905.
Biomed Phys Eng Express. 2016;2(6). doi: 10.1088/2057-1976/2/6/065002. Epub 2016 Nov 23.
Esophageal cancer is a malignant neoplasm with poor outcomes. Determination of local disease progression is a major determining factor in treatment modality, radiation dose, radiation field and subsequent surgical therapy. Discrimination of true tumor extent is difficult given the similarity of soft tissues of the malignancy compared to non-malignant tissues using current imaging modalities. A possible method to discriminate between these tissues may be to exploit mechanical properties to diagnostic advantage, as malignant tissues tend to be stiffer relative to normal adjacent tissue. Shear waves propagate faster in stiffer tissues relative to softer tissues. This may be measured by using ultrasound based shear wave vibrometry. In this method, acoustic radiation force is used to create a shear wave in the tissue of interest and ultrafast ultrasound imaging is used to track the propagating wave to measure the wave velocity and estimate the shear moduli. In this study we created simulated malignant lesions (1.5 cm length) using radiofrequency ablation in esophageal samples with varied progression (partial thickness n = 4, and full thickness n = 5) and used normal regions of the same esophageal specimen as controls. Shear wave vibrometry was used to measure shear wave group velocity and shear wave phase velocity in the specimens. These values were used to estimate shear moduli using an elastic shear wave model and elastic and viscoelastic Lamb wave models. Our results show that the group and phase velocities increase due to both full and mucosal ablation, and that discrimination may be provided by higher order analysis using viscoelastic Lamb wave fitting. This technique may have application for determination of extent of early esophageal malignancy and warrants further investigation using approaches to determine performance compared to current imaging modalities.
食管癌是一种预后较差的恶性肿瘤。确定局部疾病进展是治疗方式、放射剂量、放射野及后续手术治疗的主要决定因素。鉴于使用当前成像方式时恶性肿瘤的软组织与非恶性组织相似,区分肿瘤的真实范围很困难。一种区分这些组织的可能方法是利用力学特性以获得诊断优势,因为恶性组织相对于相邻正常组织往往更硬。与较软的组织相比,剪切波在较硬的组织中传播得更快。这可以通过基于超声的剪切波振动测量来测量。在这种方法中,声辐射力用于在感兴趣的组织中产生剪切波,超快超声成像用于跟踪传播的波以测量波速并估计剪切模量。在本研究中,我们在不同进展程度(部分厚度n = 4,全厚度n = 5)的食管样本中使用射频消融创建模拟恶性病变(长度1.5厘米),并使用同一食管标本的正常区域作为对照。使用剪切波振动测量来测量标本中的剪切波群速度和剪切波相速度。这些值用于使用弹性剪切波模型以及弹性和粘弹性兰姆波模型来估计剪切模量。我们的结果表明,由于全层和黏膜消融,群速度和相速度均增加,并且使用粘弹性兰姆波拟合的高阶分析可能提供区分。这项技术可能在确定早期食管恶性肿瘤的范围方面有应用价值,并且与当前成像方式相比,有必要使用确定性能的方法进行进一步研究。