Suppr超能文献

自适应数值偏差元动力学

Adaptive-numerical-bias metadynamics.

作者信息

Khanjari Neda, Eslami Hossein, Müller-Plathe Florian

机构信息

Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr, 75168, Iran.

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt, 64287, Germany.

出版信息

J Comput Chem. 2017 Dec 5;38(31):2721-2729. doi: 10.1002/jcc.25066. Epub 2017 Sep 26.

Abstract

A metadynamics scheme is presented in which the free energy surface is filled with progressively adding adaptive biasing potentials, obtained from the accumulated probability distribution of the collective variables. Instead of adding Gaussians with assigned height and width in conventional metadynamics method, here we add a more realistic adaptive biasing potential to the Hamiltonian of the system. The shape of the adaptive biasing potential is adjusted on the fly by sampling over the visited states. As the top of the barrier is approached, the biasing potentials become wider. This decreases the problem of trapping the system in the niches, introduced by the addition of Gaussians of fixed height in metadynamics. Our results for the free energy profiles of three test systems show that this method is more accurate and converges more quickly than the conventional metadynamics, and is quite comparable (in accuracy and convergence rate) with the well-tempered metadynamics method. © 2017 Wiley Periodicals, Inc.

摘要

本文提出了一种元动力学方案,其中通过逐步添加从集体变量的累积概率分布获得的自适应偏置势来填充自由能面。与传统元动力学方法中添加具有指定高度和宽度的高斯函数不同,这里我们向系统的哈密顿量添加了更现实的自适应偏置势。自适应偏置势的形状通过对访问状态进行采样即时调整。当接近势垒顶部时,偏置势会变宽。这减少了在元动力学中添加固定高度高斯函数所引入的将系统困在局部极小值的问题。我们对三个测试系统的自由能分布的结果表明,该方法比传统元动力学更准确且收敛更快,并且(在准确性和收敛速率方面)与加权元动力学方法相当。© 2017威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验