Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA.
Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland.
Phys Rev Lett. 2014 Jun 20;112(24):240602. doi: 10.1103/PhysRevLett.112.240602. Epub 2014 Jun 18.
Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
元动力学是一种通用且强大的增强采样方法,可用于计算软物质材料和生物分子系统。然而,经过十多年的应用和几次尝试,为这个自适应伞状采样方法提供一个坚实的理论基础,证明了严格的收敛分析是难以捉摸的。这封信描述了这样的分析,证明了经过良好调整的元动力学收敛到它被设计要达到的最终状态,因此,目前用于解释经过良好调整的元动力学的最终收敛状态的简单公式是正确和准确的。这些结果不依赖于任何假设,即集体变量动力学实际上是布朗运动或对山状沉积函数的理想化;相反,它们为该方法提出了新的、更宽容的良好行为准则。这些结果适用于具有或不具有自适应高斯或边界校正的经过良好调整的元动力学,以及偏置是在网格上近似存储还是精确存储。