School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University , Lanzhou 730000, China.
ACS Appl Mater Interfaces. 2017 Oct 18;9(41):35775-35784. doi: 10.1021/acsami.7b09005. Epub 2017 Oct 6.
Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO composites (CNT/rGO/MnMoO) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g at the scan rate of 2 mV s and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg at the power density of 1367.9 W kg. These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.
理性设计的导电分层纳米结构对于支撑赝电容材料实现超级电容器的高性能电极非常理想。在此,通过水热法在三维镍泡沫支撑的碳纳米管结构上生长了氧化石墨烯(GO)的钼酸锰纳米片。在最佳氧化石墨烯浓度下,获得的无粘结剂超级电容器阴极碳纳米管/还原氧化石墨烯/ 钼酸锰复合材料(CNT/rGO/MnMoO)具有 2374.9 F g 的高比电容,在扫描速率为 2 mV s 时具有良好的长期稳定性(在 3000 次充放电循环后,初始比电容可保持 97.1%)。以 CNT/rGO/MnMoO 作为阴极电极,以镍泡沫上的碳纳米管/活性炭(CNT-AC)作为阳极电极的非对称器件在 1367.9 W kg 的功率密度下可提供 59.4 Wh kg 的能量密度。这些优异的性能可归因于复合电极中各组分的协同效应:高赝电容 MnMoO 纳米片和三维导电 Ni 泡沫/CNTs/rGO 网络。这些结果表明,所制备的非对称超级电容器有望成为储能器件的候选材料。