Okuma Nobuyuki
Department of Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan.
Phys Rev Lett. 2017 Sep 8;119(10):107205. doi: 10.1103/PhysRevLett.119.107205.
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
我们将自旋-动量锁定的概念推广到磁振子系统,并推导了用于计算一般两体自旋哈密顿量的单磁振子态自旋期望值的公式。我们给出了磁振子自旋与动量无关的禁戒条件。作为磁振子自旋-动量锁定的例子,我们分析了具有奈尔序的一维反铁磁体以及具有120°结构的二维 Kagome 晶格反铁磁体。我们发现,即使哈密顿量具有z轴自旋旋转对称性,磁振子自旋仍依赖于其动量,这可以在奇异能带点或U(1)对称性破缺的背景下得到解释。在Kagome晶格反铁磁体中产生的动量空间中的自旋涡旋的缠绕数Q = -2,而在拓扑绝缘体表面态中观察到的典型自旋涡旋的特征是Q = +1。在另一个Kagome晶格反铁磁体中发现了具有Q = +1的表面态的磁振子类似物,即狄拉克磁振子。我们还利用庞加莱-霍普夫指数定理推导了Q的求和规则。