Li Kangkang, Li Chenyuan, Hu Jiangping, Li Yuan, Fang Chen
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Phys Rev Lett. 2017 Dec 15;119(24):247202. doi: 10.1103/PhysRevLett.119.247202. Epub 2017 Dec 13.
We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time reversal followed by space inversion (PT symmetry). We prove that Dirac points and nodal lines, the former being the limiting case of the latter, are the generic forms of symmetry-protected band crossings between magnon branches. As a concrete example, we study a Heisenberg spin model for a "spin-web" compound, Cu_{3}TeO_{6}, and show the presence of the magnon Dirac points assuming a collinear magnetic structure. Upon turning on symmetry-allowed Dzyaloshinsky-Moriya interactions, which introduce a small noncollinearity in the ground state configuration, we find that the Dirac points expand into nodal lines with nontrivial Z_{2}-topological charge, a new type of nodal line not predicted in any materials so far.
我们研究三维反铁磁体中磁振子激发的拓扑性质,其中基态构型在时间反演后接着空间反演(PT 对称性)下是不变的。我们证明狄拉克点和节线(前者是后者的极限情况)是磁振子分支之间对称性保护能带交叉的一般形式。作为一个具体例子,我们研究了一种“自旋网”化合物 Cu₃TeO₆ 的海森堡自旋模型,并假设共线磁结构展示了磁振子狄拉克点的存在。当开启对称性允许的 Dzyaloshinsky-Moriya 相互作用时,这会在基态构型中引入小的非共线性,我们发现狄拉克点扩展为具有非平凡 Z₂ 拓扑电荷的节线,这是迄今为止在任何材料中都未预测到的一种新型节线。