Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.
Langmuir. 2017 Oct 17;33(41):10851-10860. doi: 10.1021/acs.langmuir.7b03011. Epub 2017 Oct 5.
Biomolecular interactions frequently occur in orientation-specific manner. For example, prior nuclear magnetic resonance spectroscopy experiments in our lab have suggested the presence of a group of strongly binding residues on a particular face of the protein ubiquitin for interactions with Capto MMC multimodal ligands ("Capto" ligands) (Srinivasan, K.; et al. Langmuir 2014, 30 (44), 13205-13216). We present a clear confirmation of those studies by performing single-molecule force spectroscopy (SMFS) measurements of unbinding complemented with molecular dynamics (MD) calculations of the adsorption free energy of ubiquitin in two distinct orientations with self-assembled monolayers (SAMs) functionalized with "Capto" ligands. These orientations were maintained in the SMFS experiments by tethering ubiquitin mutants to SAM surfaces through strategically located cysteines, thus exposing the desired faces of the protein. Analogous orientations were maintained in MD simulations using suitable constraining methods. Remarkably, despite differences between the finer details of experimental and simulation methodologies, they confirm a clear preference for the previously hypothesized binding face of ubiquitin. Furthermore, MD simulations provided significant insights into the mechanism of protein binding onto this multimodal surface. Because SMFS and MD simulations both directly probe protein-surface interactions, this work establishes a key link between experiments and simulations at molecular scale through the determination of protein face-specific binding energetics. Our approach may have direct applications in biophysical systems where face- or orientation-specific interactions are important, such as biomaterials, sensors, and biomanufacturing.
生物分子相互作用通常以特定的方向发生。例如,我们实验室之前的核磁共振光谱实验表明,在蛋白质泛素的一个特定面上存在一组强结合残基,用于与 Capto MMC 多模态配体(“Capto”配体)相互作用(Srinivasan,K.;等。朗缪尔 2014,30(44),13205-13216)。我们通过对未结合物进行单分子力谱(SMFS)测量,并结合具有“Capto”配体的自组装单层(SAM)的吸附自由能的分子动力学(MD)计算,对这些研究进行了明确的确认。这些取向通过将泛素突变体通过位于策略位置的半胱氨酸与 SAM 表面连接来保持在 SMFS 实验中,从而暴露蛋白质的所需表面。在 MD 模拟中使用合适的约束方法保持类似的取向。值得注意的是,尽管实验和模拟方法的细节存在差异,但它们都证实了泛素先前假设的结合面具有明显的偏好。此外,MD 模拟提供了对蛋白质在这种多模态表面上结合机制的深入了解。由于 SMFS 和 MD 模拟都直接探测蛋白质-表面相互作用,因此通过确定蛋白质面特异性结合能,本工作在分子尺度上建立了实验和模拟之间的关键联系。我们的方法可能在生物物理系统中具有直接的应用,例如生物材料、传感器和生物制造,其中面或取向特异性相互作用很重要。