Stanevich Vitali, Oyeniran Oluyemi, Somani Sandeep
Protein Therapeutics API Development, Janssen Research & Development, LLC, a Johnson & Johnson company, Malvern, Pennsylvania 19355, United States.
Statistics and Decision Sciences, Janssen Research & Development, LLC, a Johnson & Johnson company, Spring House, Pennsylvania 19002, United States.
J Phys Chem B. 2024 Jun 13;128(23):5557-5566. doi: 10.1021/acs.jpcb.4c00578. Epub 2024 May 29.
Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone. The interactions of the ligand with the protein are simulated in an explicit solvent using the Replica Exchange Molecular Dynamics enhanced sampling approach in conjunction with Hydrogen Mass Repartitioning (REMD-HMR). We computed the ligand interaction surface from the simulation trajectories and correlated the features of the interaction surface with experimentally determined retention times. The simulation and analysis protocol were first applied to a series of ubiquitin mutants for which retention times on Capto MMC resin are available. The ubiquitin simulations helped identify the optimal ligand that was used in subsequent simulations on six proteins for which Capto MMC elution times are available. For each of the six proteins, we computed the interaction surface and characterized it in terms of a range of simulation-averaged residue-level physicochemical descriptors. Modeling of the salt concentrations required for elution with respect to the descriptors resulted in a linear fit in terms of aromaphilicity and Kyte-Doolittle hydrophobicity that was robust to outliers, showed high correlation, and correctly ranked the protein elution order. The physics-based model building approach described here does not require a large experimental data set and can be readily applied to different resins and diverse biomolecules.
对色谱树脂与溶质之间的相互作用进行精确的原子尺度建模,可为产品纯化条件的选择提供依据,这是生物技术和制药行业中的一个重要问题。我们提出了一种基于分子动力学模拟的方法,用于定性预测给定色谱树脂上蛋白质的相互作用位点(特异性)和保留时间(亲和力)。我们用一个无约束配体模拟树脂,该配体由树脂头基与琼脂糖主链上依次增大的片段组成。使用副本交换分子动力学增强采样方法结合氢质量重分配(REMD-HMR),在显式溶剂中模拟配体与蛋白质的相互作用。我们从模拟轨迹计算配体相互作用表面,并将相互作用表面的特征与实验测定的保留时间相关联。该模拟和分析方案首先应用于一系列在Capto MMC树脂上有保留时间数据的泛素突变体。泛素模拟有助于确定最佳配体,该配体随后用于对六种有Capto MMC洗脱时间数据的蛋白质进行模拟。对于这六种蛋白质中的每一种,我们计算了相互作用表面,并根据一系列模拟平均的残基水平物理化学描述符对其进行了表征。针对这些描述符对洗脱所需盐浓度进行建模,得到了关于亲芳性和Kyte-Doolittle疏水性的线性拟合,该拟合对异常值具有鲁棒性,显示出高相关性,并正确地对蛋白质洗脱顺序进行了排序。这里描述的基于物理的模型构建方法不需要大量的实验数据集,并且可以很容易地应用于不同的树脂和各种生物分子。