Mandal Subhasish, Zhang Peng, Ismail-Beigi Sohrab, Haule K
Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA.
Department of Physics, Xi'An Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China.
Phys Rev Lett. 2017 Aug 11;119(6):067004. doi: 10.1103/PhysRevLett.119.067004. Epub 2017 Aug 8.
Recent observation of ∼10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO_{3}. The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase. But the angle sensitivity increases and the orbital differentiation decreases in the monolayer phase compared to the bulk phase. The correlations are more dependent on Hund's J than Hubbard U. The observed orbital selective incoherence to coherence crossover with temperature confirms the Hund's metallic nature of the monolayer FeSe. We also find electron doping by oxygen vacancies in SrTiO_{3} increases the correlation strength, especially in the d_{xy} orbital by reducing the Se-Fe-Se angle.
最近观察到,相比于体相FeSe,FeSe单层的临界温度高出约10倍,这引起了广泛关注,因为单层相中的电子结构似乎与体相FeSe不同。通过结合密度泛函理论和动力学平均场理论,我们发现电子关联对预测的原子尺度几何结构以及SrTiO₃上单层FeSe的电子结构有重要影响。无论是在体相还是单层相中,电子关联主要由Se-Fe-Se角控制。但与体相相比,单层相中角度敏感性增加而轨道分化减小。这些关联更多地依赖于洪德J而不是哈伯德U。观察到的随温度的轨道选择性从非相干到相干的转变证实了单层FeSe的洪德金属性质。我们还发现,SrTiO₃中氧空位导致的电子掺杂增加了关联强度,特别是通过减小Se-Fe-Se角,增强了dₓy轨道中的关联强度。