Falkovich Gregory, Levitov Leonid
Weizmann Institute of Science, Rehovot 76100, Israel.
Institute for Information Transmission Problems, Moscow 127994, Russia.
Phys Rev Lett. 2017 Aug 11;119(6):066601. doi: 10.1103/PhysRevLett.119.066601. Epub 2017 Aug 10.
Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which renders the spatial patterns of the current and electric field strikingly dissimilar. Notably, driven by the viscous friction force from adjacent layers, current can flow against the electric field, generating negative resistance, vorticity, and vortices. Moreover, different current flows can result in identical potential distributions. This sets a new situation where inferring the electron flow pattern from the measured potentials presents a nontrivial problem. Using the inherent relation between these patterns through complex analysis, here we propose a method for extracting the current flows from potential distributions measured in the presence of a magnetic field.
粘性电子学是一个新兴领域,研究的是强相互作用电子表现得像流体的系统。电子粘性流由非局部电流-场关系支配,这使得电流和电场的空间模式截然不同。值得注意的是,在相邻层的粘性摩擦力驱动下,电流可以逆着电场流动,产生负电阻、涡度和涡旋。此外,不同的电流流动可以导致相同的电势分布。这就产生了一种新情况,即从测量的电势推断电子流动模式是一个 nontrivial 问题。通过复分析利用这些模式之间的内在关系,我们在此提出一种从存在磁场时测量的电势分布中提取电流流动的方法。