Guo Haoyu, Ilseven Ekin, Falkovich Gregory, Levitov Leonid S
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3068-3073. doi: 10.1073/pnas.1612181114. Epub 2017 Mar 6.
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.
强相互作用电子能够以一种整齐协调的方式移动,这让人联想到粘性流体的运动。在此,我们表明在粘性流中,相互作用促进了输运,使得电导超过了基本的朗道弹道极限[公式:见正文]。对于通过粘性点接触的流动,这种效应尤为显著,粘性点接触是一种在[公式:见正文]时呈现量子力学弹道输运,但在高温下由电子流体动力学主导的收缩结构。我们使用基于准流体动力学变量的方法,发展了一种从弹道到粘性转变的理论。发现电导服从一个加和关系[公式:见正文],其中在流体动力学极限下,粘性贡献[公式:见正文]比[公式:见正文]占主导。超弹道、低耗散输运是粘性电子学的一个普遍特征。