Miao Haixing, Adhikari Rana X, Ma Yiqiu, Pang Belinda, Chen Yanbei
School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom.
LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2017 Aug 4;119(5):050801. doi: 10.1103/PhysRevLett.119.050801. Epub 2017 Aug 2.
The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.
量子克拉美-罗界(QCRB)为在量子 regime 中运行的探测器测量经典信号设定了一个基本极限。利用线性响应理论和海森堡不确定性关系,我们推导出了实现这一基本极限的一般条件。当应用于用测试质量进行的经典位移测量时,该条件导致了 QCRB 与标准量子极限之间的明确联系,标准量子极限源于测量精度与量子反作用之间的权衡;QCRB 可以被视为一种规避了反作用的量子非破坏测量的结果。此外,我们表明测试质量更多地是一种用于提高测量灵敏度的资源,而不是量子反作用的受害者,这为提高一类广泛传感器的灵敏度提出了一种新方法。我们用激光干涉引力波探测器来说明这些要点。