Korobko Mikhail, Ma Yiqiu, Chen Yanbei, Schnabel Roman
1Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
2Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125 USA.
Light Sci Appl. 2019 Dec 11;8:118. doi: 10.1038/s41377-019-0230-2. eCollection 2019.
The quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years, techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical resonators have been invented. Resonators, however, have finite linewidths, and the high signal frequencies that are produced during the highly scientifically interesting ring-down of astrophysical compact-binary mergers still cannot be resolved. Here, we propose a purely optical approach for expanding the detection bandwidth. It uses quantum uncertainty squeezing inside one of the optical resonators, compensating for the finite resonators' linewidths while keeping the low-frequency sensitivity unchanged. This quantum expander is intended to enhance the sensitivity of future gravitational-wave detectors, and we suggest the use of this new tool in other cavity-enhanced metrological experiments.
激光的量子不确定性限制了引力波天文台的灵敏度。在过去30年里,已经发明了用于压缩量子不确定性以及用光学谐振器增强引力波信号的技术。然而,谐振器具有有限的线宽,在天体物理致密双星合并的极具科学意义的衰减过程中产生的高信号频率仍然无法分辨。在此,我们提出一种纯粹的光学方法来扩展探测带宽。它利用其中一个光学谐振器内部的量子不确定性压缩,在保持低频灵敏度不变的同时补偿谐振器有限的线宽。这种量子扩展器旨在提高未来引力波探测器的灵敏度,并且我们建议在其他腔增强计量实验中使用这种新工具。