Wetsus, Centre of Excellence for Sustainable Water Technology , P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands.
Membrane Science & Technology, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.
Environ Sci Technol. 2017 Nov 7;51(21):13028-13035. doi: 10.1021/acs.est.7b03858. Epub 2017 Oct 13.
Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg and Ca) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.
反向电渗析(RED)是一种基于膜的可再生能源技术,可以从盐度梯度中获取能量。预期的进料流是天然河水和海水,它们不仅含有单价离子,还含有二价离子。然而,由于 uphill 运输和膜电阻的增加,使用含有二价离子的进料流的 RED 会经历较低的功率密度。在这项研究中,我们研究了二价阳离子(Mg 和 Ca)对 RED 的影响,并展示了使用新型和现有的商业阳离子交换膜(CEMs)来减轻这些影响。单价选择性的 Neosepta CMS 被认为可以阻止二价阳离子的传输,因此可以减轻堆栈电压的降低。新型多价可渗透的 Fuji T1 能够在不显著增加电阻的情况下运输二价阳离子。与使用含有二价阳离子的进料流进行 RED 时使用标准级 CEMs 相比,这两种策略都显著提高了功率密度。