文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能进行离子选择性膜的材料发现

Materials discovery of ion-selective membranes using artificial intelligence.

作者信息

Maleki Reza, Shams Seyed Mohammadreza, Chellehbari Yasin Mehdizadeh, Rezvantalab Sima, Jahromi Ahmad Miri, Asadnia Mohsen, Abbassi Rouzbeh, Aminabhavi Tejraj, Razmjou Amir

机构信息

Department of Chemical Engineering, Shiraz University, Shiraz, Iran.

Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

Commun Chem. 2022 Oct 20;5(1):132. doi: 10.1038/s42004-022-00744-x.


DOI:10.1038/s42004-022-00744-x
PMID:36697945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9814132/
Abstract

Significant attempts have been made to improve the production of ion-selective membranes (ISMs) with higher efficiency and lower prices, while the traditional methods have drawbacks of limitations, high cost of experiments, and time-consuming computations. One of the best approaches to remove the experimental limitations is artificial intelligence (AI). This review discusses the role of AI in materials discovery and ISMs engineering. The AI can minimize the need for experimental tests by data analysis to accelerate computational methods based on models using the results of ISMs simulations. The coupling with computational chemistry makes it possible for the AI to consider atomic features in the output models since AI acts as a bridge between the experimental data and computational chemistry to develop models that can use experimental data and atomic properties. This hybrid method can be used in materials discovery of the membranes for ion extraction to investigate capabilities, challenges, and future perspectives of the AI-based materials discovery, which can pave the path for ISMs engineering.

摘要

人们已做出大量努力来提高离子选择性膜(ISM)的生产效率并降低成本,而传统方法存在局限性、实验成本高和计算耗时等缺点。消除实验局限性的最佳方法之一是人工智能(AI)。本综述讨论了AI在材料发现和ISM工程中的作用。AI可以通过数据分析将实验测试的需求降至最低,从而基于使用ISM模拟结果的模型加速计算方法。与计算化学相结合,使AI能够在输出模型中考虑原子特征,因为AI充当实验数据和计算化学之间的桥梁,以开发能够使用实验数据和原子特性的模型。这种混合方法可用于离子提取膜的材料发现,以研究基于AI的材料发现的能力、挑战和未来前景,这可为ISM工程铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/9f3ec00fd74b/42004_2022_744_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/b251cdec84fb/42004_2022_744_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/575968c728ef/42004_2022_744_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/0a892e835225/42004_2022_744_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/d1e96c1e42da/42004_2022_744_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/15ab15e864de/42004_2022_744_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/9f3ec00fd74b/42004_2022_744_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/b251cdec84fb/42004_2022_744_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/575968c728ef/42004_2022_744_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/0a892e835225/42004_2022_744_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/d1e96c1e42da/42004_2022_744_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/15ab15e864de/42004_2022_744_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/9814132/9f3ec00fd74b/42004_2022_744_Fig6_HTML.jpg

相似文献

[1]
Materials discovery of ion-selective membranes using artificial intelligence.

Commun Chem. 2022-10-20

[2]
Artificial intelligence for drug discovery: Resources, methods, and applications.

Mol Ther Nucleic Acids. 2023-2-18

[3]
The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies.

Pharmaceuticals (Basel). 2023-6-18

[4]
Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions.

J Biomed Inform. 2022-3

[5]
Recent advances in polymeric nanostructured ion selective membranes for biomedical applications.

Talanta. 2021-12-1

[6]
ARTIFICIAL INTELLIGENCE IN MEDICAL PRACTICE: REGULATIVE ISSUES AND PERSPECTIVES.

Wiad Lek. 2020

[7]
A primer on applying AI synergistically with domain expertise to oncology.

Biochim Biophys Acta Rev Cancer. 2021-8

[8]
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors.

Methods Mol Biol. 2022

[9]
In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back.

Adv Mater. 2024-7

[10]
Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry.

Chemosphere. 2023-10

引用本文的文献

[1]
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication.

Membranes (Basel). 2025-8-19

[2]
Machine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separation.

Environ Sci Technol. 2025-1-21

本文引用的文献

[1]
Machine learning-driven new material discovery.

Nanoscale Adv. 2020-6-22

[2]
Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids.

ACS Macro Lett. 2020-1-21

[3]
Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries.

RSC Adv. 2018-11-26

[4]
Appraisal of Cu(ii) adsorption by graphene oxide and its modelling artificial neural network.

RSC Adv. 2019-9-24

[5]
Machine Learning-Assisted Design of Material Properties.

Annu Rev Chem Biomol Eng. 2022-6-10

[6]
How Does a Microfluidic Platform Tune the Morphological Properties of Polybenzimidazole Nanoparticles?

J Phys Chem B. 2022-1-13

[7]
Design of phosphoryl containing podands with Li/Na selectivity using machine learning.

SAR QSAR Environ Res. 2021-7

[8]
Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer's disease.

Alzheimers Res Ther. 2021-5-3

[9]
Prediction and Optimization of Ion Transport Characteristics in Nanoparticle-Based Electrolytes Using Convolutional Neural Networks.

J Phys Chem B. 2021-5-13

[10]
Big data and machine learning for materials science.

Discov Mater. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索