Suppr超能文献

非微扰重整群方法对扩散型传染病过程的研究。

Nonperturbative renormalization group for the diffusive epidemic process.

机构信息

LPMMC, Université Grenoble Alpes and CNRS, F-38042 Grenoble, France.

Physikalisches Institut, Universität Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland.

出版信息

Phys Rev E. 2017 Aug;96(2-1):022137. doi: 10.1103/PhysRevE.96.022137. Epub 2017 Aug 16.

Abstract

We consider the Diffusive Epidemic Process (DEP), a two-species reaction-diffusion process originally proposed to model disease spread within a population. This model exhibits a phase transition from an active epidemic to an absorbing state without sick individuals. Field-theoretic analyses suggest that this transition belongs to the universality class of Directed Percolation with a Conserved quantity (DP-C, not to be confused with conserved-directed percolation C-DP, appearing in the study of stochastic sandpiles). However, some exact predictions derived from the symmetries of DP-C seem to be in contradiction with lattice simulations. Here we revisit the field theory of both DP-C and DEP. We discuss in detail the symmetries present in the various formulations of both models. We then investigate the DP-C model using the derivative expansion of the nonperturbative renormalization group formalism. We recover previous results for DP-C near its upper critical dimension d_{c}=4, but show how the corresponding fixed point seems to no longer exist below d≲3. Consequences for the DEP universality class are considered.

摘要

我们考虑扩散流行病过程(DEP),这是一个双物种反应扩散过程,最初被提议用于模拟人群中疾病的传播。该模型表现出从活跃的流行病到没有患病个体的吸收状态的相变。场论分析表明,这种转变属于具有守恒量的定向渗流的普适类(DP-C,不要与在随机沙堆研究中出现的守恒定向渗流 C-DP 混淆)。然而,一些源自 DP-C 对称性的精确预测似乎与晶格模拟相矛盾。在这里,我们重新审视 DP-C 和 DEP 的场论。我们详细讨论了这两个模型的各种形式中存在的对称性。然后,我们使用非微扰重整化群形式主义的导数展开来研究 DP-C 模型。我们在 DP-C 的上临界维度 d_{c}=4 附近恢复了之前的结果,但表明在 d≲3 以下,相应的固定点似乎不再存在。考虑了对 DEP 普适类的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验