Brinkman Braden A W
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
ArXiv. 2025 May 13:arXiv:2301.09600v4.
The "critical brain hypothesis" posits that neural circuitry may be tuned close to a "critical point" or "phase transition"-a boundary between different operating regimes of the circuit. The renormalization group and theory of critical phenomena explain how systems tuned to a critical point display scale invariance due to fluctuations in activity spanning a wide range of time or spatial scales. In the brain this scale invariance has been hypothesized to have several computational benefits, including increased collective sensitivity to changes in input and robust propagation of information across a circuit. However, our theoretical understanding of critical phenomena in neural circuitry is limited because standard renormalization group methods apply to systems with either highly organized or completely random connections. Connections between neurons lie between these extremes, and may be either excitatory (positive) or inhibitory (negative), but not both. In this work we develop a renormalization group method that applies to models of spiking neural populations with some realistic biological constraints on connectivity, and derive a scaling theory for the statistics of neural activity when the population is tuned to a critical point. We show that the scaling theories differ for models of versus circuits-they belong to different "universality classes"-and that both may exhibit "anomalous" scaling at a critical balance of inhibition and excitation. We verify our theoretical results on simulations of neural activity data, and discuss how our scaling theory can be further extended and applied to real neural data.
“临界脑假说”认为,神经回路可能被调节至接近“临界点”或“相变”——即回路不同运行状态之间的边界。重整化群和临界现象理论解释了调节至临界点的系统如何由于跨越广泛时间或空间尺度的活动波动而呈现尺度不变性。在大脑中,这种尺度不变性被认为具有多种计算优势,包括对输入变化的集体敏感性增加以及信息在回路中的稳健传播。然而,我们对神经回路中临界现象的理论理解有限,因为标准的重整化群方法适用于具有高度组织化或完全随机连接的系统。神经元之间的连接处于这两种极端情况之间,可能是兴奋性(正)或抑制性(负),但不会同时兼具两者。在这项工作中,我们开发了一种重整化群方法,该方法适用于对具有一些现实生物学连接约束的脉冲神经群体模型,并推导了群体调节至临界点时神经活动统计的标度理论。我们表明,兴奋性与抑制性回路模型的标度理论不同——它们属于不同的“普适类”——并且在抑制和兴奋的临界平衡状态下两者都可能表现出“反常”标度。我们在神经活动数据模拟中验证了我们的理论结果,并讨论了我们的标度理论如何能够进一步扩展并应用于真实神经数据。