Kobayashi Yasuaki, Kitahata Hiroyuki, Nagayama Masaharu
Center for Simulation Sciences, Ochanomizu University, Tokyo 112-8620, Japan.
Department of Physics, Chiba University, Chiba 263-8522, Japan.
Phys Rev E. 2017 Aug;96(2-1):022213. doi: 10.1103/PhysRevE.96.022213. Epub 2017 Aug 23.
We investigate a two-dimensional spatially extended system that has a weak sense of excitability, where an excitation wave has a uniform profile and propagates only within a finite range. Using a cellular automaton model of such a weakly excitable system, we show that three kinds of sustained dynamics emerge when nonlocal spatial interactions are provided, where a chain of local wave propagation and nonlocal activation forms an elementary oscillatory cycle. Transition between different oscillation regimes can be understood as different ways of interactions among these cycles. Analytical expressions are given for the oscillation probability near the onset of oscillations.
我们研究了一个二维空间扩展系统,该系统具有微弱的兴奋性,其中激发波具有均匀的轮廓且仅在有限范围内传播。使用这种弱可激发系统的元胞自动机模型,我们表明当提供非局部空间相互作用时会出现三种持续动力学,其中局部波传播和非局部激活的链形成一个基本振荡周期。不同振荡状态之间的转变可以理解为这些周期之间不同的相互作用方式。给出了振荡开始附近振荡概率的解析表达式。