Suppr超能文献

水-有机纳米液滴的受限相分离

Confined phase separation of aqueous-organic nanodroplets.

作者信息

Hrahsheh Fawaz, Sani Wudil Yakubu, Wilemski Gerald

机构信息

Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia.

出版信息

Phys Chem Chem Phys. 2017 Oct 11;19(39):26839-26845. doi: 10.1039/c7cp04531j.

Abstract

Nano-confined supercooled water occurs frequently in aqueous-organic aerosol nanodroplets that are ubiquitous in the atmosphere and in many industrial processes such as natural gas refining. The structure of these nanodroplets is important because it influences droplet growth and evaporation rates, nucleation rates, and radiative properties. We used classical molecular dynamics (MD) simulations to study the structures of binary water-butanol nanodroplets for several temperatures and droplet sizes. Water-butanol cross interactions are calculated using a Lennard-Jones (LJ) potential with non-bonded specific parameters adjusted to reproduce the experimentally observed mutual solubilities of water-butanol at 295 K. To compare with the results of the density functional theory (DFT) of aqueous-organic nanodroplets [Phys. Chem. Chem. Phys., 2006, 8, 1266-1270], we focus on T = 250 K. Our simulations show three different nanodroplet structures depending on the butanol concentration. For low concentrations, we observe a core-shell (CS) structure in which a butanol shell completely wets a water-rich core. For high concentrations, a well-mixed (WM) structure occurs as the water and the butanol become fully miscible. For intermediate concentrations of butanol, we find a distinct phase-separated Russian Doll-Shell (RDS) structure. This RDS structure consists of a roughly ellipsoidal water-rich droplet partially wetted by a well-mixed water/butanol convex lens (RD) and this lens-on-sphere structure is coated by a thin shell of butanol. We also examined the stability of our RDS structure at a higher temperature and found that at 295 K, the RDS structure had transformed into a well-mixed droplet, presumably due to the increase in the mutual solubility of water and butanol. Finally, we performed calculations using classical density functional theory for conditions that should favor the RDS structure. The results closely resembled those found using MD.

摘要

纳米受限过冷水频繁出现在水 - 有机气溶胶纳米液滴中,这些纳米液滴在大气以及许多工业过程(如天然气精炼)中普遍存在。这些纳米液滴的结构很重要,因为它会影响液滴的生长和蒸发速率、成核速率以及辐射特性。我们使用经典分子动力学(MD)模拟来研究二元水 - 丁醇纳米液滴在几个温度和液滴尺寸下的结构。水 - 丁醇交叉相互作用是使用 Lennard - Jones(LJ)势计算的,其中非键合特定参数经过调整,以重现 295 K 时水 - 丁醇实验观察到的互溶性。为了与水 - 有机纳米液滴的密度泛函理论(DFT)结果[《物理化学化学物理》,2006,8,1266 - 1270]进行比较,我们重点关注 T = 250 K。我们的模拟显示,根据丁醇浓度不同,纳米液滴呈现三种不同的结构。对于低浓度,我们观察到一种核壳(CS)结构,其中丁醇壳完全润湿富含水的核。对于高浓度,由于水和丁醇完全互溶,会出现一种充分混合(WM)结构。对于丁醇的中间浓度,我们发现一种独特的相分离俄罗斯套娃壳(RDS)结构。这种 RDS 结构由一个大致椭圆形的富含水的液滴组成,该液滴部分被一个充分混合的水/丁醇凸透镜(RD)润湿,并且这种球上透镜结构被一层薄的丁醇壳覆盖。我们还研究了我们的 RDS 结构在更高温度下的稳定性,发现在 295 K 时,RDS 结构已转变为充分混合的液滴,可能是由于水和丁醇互溶性的增加。最后,我们使用经典密度泛函理论对应该有利于 RDS 结构的条件进行了计算。结果与使用 MD 得到的结果非常相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验