Suppr超能文献

第111位半胱氨酸向丝氨酸的转化使有害的超氧化物歧化酶1 A4V突变体解聚,并在一项离散分子动力学研究中保持其对人类肌萎缩侧索硬化症的稳定性。

Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human-A Discrete Molecular Dynamics Study.

作者信息

Srinivasan E, Rajasekaran R

机构信息

Department of Biotechnology, School of Bio Sciences and Technology, Bioinformatics Lab, VIT University, Vellore, Tamil Nadu, 632014, India.

出版信息

Cell Biochem Biophys. 2018 Jun;76(1-2):231-241. doi: 10.1007/s12013-017-0830-5. Epub 2017 Sep 26.

Abstract

Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harboring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.

摘要

蛋白质聚集是多种神经退行性疾病的标志,如人类的肌萎缩侧索硬化症(ALS)。已发现铜/锌超氧化物歧化酶(SOD1)蛋白的突变是大多数伴有异常蛋白聚集体的家族性ALS病例背后的一个主要原因。在此,我们报告了有益突变C111S的生物物理特征,该突变可稳定携带A4V突变的SOD1,A4V突变是导致最致命疾病的突变之一,会导致蛋白质不稳定和聚集。在本研究中,我们利用离散分子动力学(DMD)模拟,该模拟规定了C111S突变在A4V突变体中的系统作用前景,该突变可稳定蛋白质并阻止蛋白质聚集的形成。据此,我们的研究结果表明,SOD1中C111S的突变有助于恢复蛋白质结构构象,防止有毒聚集体的形成,从而微妙地阻碍疾病致病性。因此,我们的研究为开发治疗影响人类的无法治愈的ALS提供了一种可行的药物策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验