Humboldt-Universität zu Berlin , Institut für Chemie, Brook-Taylor-Straße 2, D-12489 Berlin, Germany.
Department of Chemistry, The University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2017 Oct 25;139(42):15033-15042. doi: 10.1021/jacs.7b07127. Epub 2017 Oct 11.
The synthesis and characterization of a hexanuclear cobalt complex 1 involving a nonheme ligand system, L1, supported on a SnO stannoxane core are reported. Complex 1 acts as a unique catalyst for dioxygen reduction, whose selectivity can be changed from a preferential 4e/4H dioxygen-reduction (to water) to a 2e/2H process (to hydrogen peroxide) only by increasing the temperature from -50 to 25 °C. A variety of spectroscopic methods (Sn-NMR, magnetic circular dichroism (MCD), electron paramagnetic resonance (EPR), SQUID, UV-vis absorption, and X-ray absorption spectroscopy (XAS)) coupled with advanced theoretical calculations has been applied for the unambiguous assignment of the geometric and electronic structure of 1. The mechanism of the O-reduction reaction has been clarified on the basis of kinetic studies on the overall catalytic reaction as well as each step in the catalytic cycle and by low-temperature detection of intermediates. The reason why the same catalyst can act in either the two- or four-electron reduction of O can be explained by the constraint provided by the stannoxane core that makes the O-binding to 1 an entropically unfavorable process. This makes the end-on μ-1,2-peroxodicobalt(III) intermediate 2 unstable against a preferential proton-transfer step at 25 °C leading to the generation of HO. In contrast, at -50 °C, the higher thermodynamic stability of 2 leads to the cleavage of the O-O bond in 2 in the presence of electron and proton donors by a proton-coupled electron-transfer (PCET) mechanism to complete the O-to-2HO catalytic conversion in an overall 4e/4H step. The present study provides deep mechanistic insights into the dioxygen reduction process that should serve as useful and broadly applicable principles for future design of more efficient catalysts in fuel cells.
报道了一种涉及非血红素配体系统 L1 的六核钴配合物 1 的合成与表征,该配合物负载在 SnO 锡氧烷核上。配合物 1 可作为氧气还原的独特催化剂,其选择性仅通过将温度从-50°C 升高到 25°C,就可以从优先的 4e/4H 氧气还原(生成水)转变为 2e/2H 过程(生成过氧化氢)。多种光谱方法(Sn-NMR、磁圆二色性(MCD)、电子顺磁共振(EPR)、超导量子干涉仪(SQUID)、紫外-可见吸收和 X 射线吸收光谱(XAS))结合先进的理论计算,已被用于明确分配 1 的几何和电子结构。基于对整个催化反应以及催化循环中每个步骤的动力学研究,以及低温检测中间体,阐明了 O 还原反应的机理。同一催化剂可以在 O 的两电子或四电子还原中起作用的原因可以用锡氧烷核提供的约束来解释,该约束使 O 与 1 的结合在热力学上是不利的过程。这使得端接的 μ-1,2-过氧二钴(III)中间物 2 在 25°C 下优先质子转移步骤不稳定,导致 HO 的生成。相比之下,在-50°C 下,2 的更高热力学稳定性导致在电子和质子供体存在下通过质子耦合电子转移(PCET)机制裂解 2 中的 O-O 键,以在整体 4e/4H 步骤中完成 O 到 2HO 的催化转化。本研究为氧气还原过程提供了深入的机理见解,这应该为未来在燃料电池中设计更高效的催化剂提供有用且广泛适用的原则。