Suppr超能文献

ePave:一种用于智能自主路面的自供电无线传感器。

ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

作者信息

Xiao Jian, Zou Xiang, Xu Wenyao

机构信息

Road Traffic Intelligent Detection and Equipment Engineering Technology Research Centre, Chang'an University, Xi'an 710064, China.

Department of Computer Science and Engineering, University at Buffalo, SUNY, Buffalo, NY 14260, USA.

出版信息

Sensors (Basel). 2017 Sep 26;17(10):2207. doi: 10.3390/s17102207.

Abstract

"Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

摘要

“智能路面”是一种用于交通和道路工程中各种道路应用的新兴基础设施。然而,由于传感器系统的电池寿命限制,现有的道路监测解决方案需要一定的定期维护工作。为此,我们提出了一种端到端的自供电无线传感器——ePave,以促进智能和自主路面的发展。ePave系统包括一个自供电模块、一个超低功耗传感器系统、一个无线传输模块和一个内置电源管理模块。首先,我们进行了一项实证研究来表征压电模块,以优化能量收集效率。其次,我们开发了一个集成了优化能量收集器的传感器系统。指定了一个自适应功率旋钮,根据能量预算来调整功耗。最后,我们在实际应用中对ePave系统进行了深入评估,以检验系统性能并探索权衡之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ed/5677397/19a2a3258b70/sensors-17-02207-g017.jpg

相似文献

5
Energy scavenging for long-term deployable wireless sensor networks.面向长期可部署无线传感器网络的能量收集
Talanta. 2008 May 15;75(3):613-23. doi: 10.1016/j.talanta.2007.12.021. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验