Pigné Sandrine, Zykwinska Agata, Janod Etienne, Cuenot Stéphane, Kerkoud Mohammed, Raulo Roxane, Bataillé-Simoneau Nelly, Marchi Muriel, Kwasiborski Anthony, N'Guyen Guillaume, Mabilleau Guillaume, Simoneau Philippe, Guillemette Thomas
IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France.
UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France.
Fungal Biol Biotechnol. 2017 Jan 6;4:1. doi: 10.1186/s40694-016-0029-3. eCollection 2017.
Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus , by generating a deficient mutant and examining its phenotype.
Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δ strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δ strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δ strain.
This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.
黄素依赖性单加氧酶参与关键的生物过程,因为它们催化各种各样的化学、区域和对映选择性氧化反应。黄素蛋白单加氧酶在微生物中经常出现,其中大多数需要进一步的功能和生物催化评估。在这里,我们通过产生一个缺陷突变体并检查其表型,研究了编码植物致病真菌中A组黄素单加氧酶的基因的功能。
功能分析表明,AbMak1蛋白参与细胞壁生物合成并影响黑色素化过程。我们记录到,与野生型和互补菌株相比,Δ菌株中的黑色素含量显著降低。我们使用电子显微镜和原子力显微镜研究了野生型和转化体中的细胞壁形态和物理性质。这些方法证实了Δ菌株中分生孢子壁结构的异常形态,这对亲水性粘附和分生孢子表面硬度有影响。然而,Δ菌株在生长、分生孢子形成、致病性或对各种环境胁迫的敏感性方面没有明显损害。
本研究为真菌黄素依赖性单加氧酶的功能提供了新的见解,该酶在黑色素化中起重要作用。